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Immunological functions of mast cells are currently considered to be much broader than the original role of
mast cells in IgE-driven allergic disease. The spectrum of proposed mast cell functions includes areas as
diverse as the regulation of innate and adaptive immune responses, protective immunity against viral, micro-
bial, and parasitic pathogens, autoimmunity, tolerance to graft rejection, promotion of or protection from
cancer, wound healing, angiogenesis, cardiovascular diseases, diabetes, obesity, and others. The vast
majority of in vivo mast cell data have been based on mast cell-deficient Kit mutant mice. However, work
in new mouse mutants with unperturbed Kit function, which have a surprisingly normal immune system,
has failed to corroborate some key immunological aspects, formerly attributed to mast cells. Here, we
consider the implications of these recent developments for the state of the field as well as for future work,
aiming at deciphering the physiological functions of mast cells.
Introduction
The original recognition of immunological hyperreactivity and

allergic inflammation dates back more than 100 years. Paul

Ehrlich, referring to self-reactive antibodies, coined the term

‘‘horror auto-toxicus’’ (the fear of being toxic to oneself) but

rejected the idea that immunological autoaggression would

exist or make sense (Ehrlich, 1901). Clemens von Pirquet

conceived the concept of allergy as immunological hyperreac-

tivity (von Pirquet, 1906). The mast cell, discovered (Ehrlich,

1877) well before allergy was recognized as a regular inducible

immunological phenomenon, happens to be at the center of

anaphylaxis and allergic inflammation (Mota and Vugman,

1956), with IgE (Ishizaka and Ishizaka, 1966) providing the link

between antigen (allergen) and the high-affinity IgE receptor

(FcεRI) (Blank et al., 1989) expressed on mast cells. Mast cells

can be viewed as the immune system’s loaded gun. There is

arguably no second cell type in the immune system as powerfully

equipped with a large array of chemically diverse and highly

potent compounds. Mast cell products cover a wide range of

biological activities from the promotion of local inflammation to

the regulation of systemic blood pressure and vessel perme-

ability. Upon stimulation, mast cells rapidly release by degranu-

lation, among other products, histamine, heparin and other

proteoglycans, granule-associated proteases, and they produce

leukotriens and prostaglandins. Mast cell products can kill hu-

mans and animals within minutes in what is known as anaphy-

laxis (Portier and Richet, 1902). In addition, mast cells also

produce chemokines and cytokines (reviewed in Galli et al.,

2008), notably IL-4 and IL-13, key factors initiating or augment-

ing type 2 immunity (Liang et al., 2012).

To this date, the ‘‘positive’’ counterpart to the mast cell’s

‘‘negative’’ role in the allergic arm of immunity remains puzzling.

Although exposure to and protective immunity against patho-

gens has been found inversely correlated with the emergence

of allergic disease (Ege et al., 2011), the phenomenon of

allergy per se, i.e., hyperreactivity upon repeated encounter
with innocuous substances, remains a paradox of the immune

system. As with other weapons, the terms of usage (i.e., licensed

or not) and the targets (e.g., self-tissues or pathogens) determine

harm (as in allergy) or protection (as in resolving and lasting

immunity). The notion of a primary function of mast cells in the

promotion of allergic inflammation is difficult to accept. Yet,

exactly this undesired and in extreme cases devastating role of

mast cells in allergic disease remains the best-understood and

-documented function. The essential role of mast cells in this

type of immune reaction is underscored by the fact that mast

cell-deficient mice are unable to mount IgE-mediated local and

systemic anaphylaxis (Feyerabend et al., 2011; Lilla et al.,

2011; Sawaguchi et al., 2012; Wershil et al., 1987). In KitW/Wv

(Wershil et al., 1987) and in Cpa3Cre (Feyerabend et al., 2011)

mice, the defect in the response was restored upon mast cell

transfers.

For a long time, this culprit role of mast cells in allergic disease,

and the concomitant lack of known functions in protective

immunity, hindered mast cells from entering immunology’s

center stage. This situation has changed dramatically over the

past years, as manifold functions for mast cells have been re-

ported. Roles for mast cells have been reported in the regulation

of innate and adaptive immune responses, including tolerance

to skin graft rejection (de Vries and Noelle, 2010; Lu et al.,

2006), in settings of T cell and antibody mediated autoimmunity

(Sayed et al., 2008), in protective immunity against viral (Wang

et al., 2012) andmicrobial (Chan et al., 2012) pathogens, in tissue

remodeling, wound healing (Gilfillan and Beaven, 2011) and

angiogenesis (Coussens et al., 1999), in cancer promotion or

protection from cancer by participation in tumor stroma (Tlsty

and Coussens, 2006), and in immune-metabolic syndromes of

diabetes and obesity (Liu et al., 2009). Beyond these immune

functions, mast cells have been proposed to be involved in

diverse areas including vascular diseases (Bot and Biessen,

2011), anxiety behavior (Nautiyal et al., 2008), male (Haidl

et al., 2011) and female (Menzies et al., 2011) fertility, and
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mammary gland development (Coussens and Pollard, 2011). It is

evident from this all but complete list that, if indeed true, mast

cells have a huge spectrum of functions. Outside observers

might not be the only ones concerned that this list could be an

‘‘immunological bubble.’’ If not, mast cells were indeed among

the cells with the most pleiotropic functions in the immune

system, and beyond. It is interesting to note that many authors

of primary and reviewing literature emphasize the versatility of

mast cell functions, meaning that mast cells’ behavior, e.g., as

suppressers or enhancers of inflammation, may vary depending

on the context. It is often ambiguous whether ‘‘context’’ refers

to experimental conditions or to physiological or pathological

states. Althouh this idea may appropriately describe mast cell

functions, it can also accommodate conflicting data, and

a degree of vagueness remains inherent to this concept. Many

of the reported mast cell functions listed above have remained

controversial or, at least, have not been independently verified

in different experimental settings, such as in independent mouse

models. In conclusion, mast cells and the mast cell enigma

have kept their fascination, and, in our view, many physiological

functions of mast cells beyond allergic disease remain to be

unequivocally demonstrated.

In this article, we refrain from an in-depth review of the most

prominent and recent mast cell literature along the lines of the

listed functions stated above. Instead, our goal is to provide

a framework in which to consider past and discuss future ex-

perimental settings and their implications to test relevant mast

cell functions under physiological and pathological conditions.

With this in mind, key topics to be covered are, in brief, the

role of Kit in mast cell research, the use of cultured mast cells

as in vivo tools, and the quest for Kit-independent mast cell

deficiency models, followed by a brief overview of proven and

more speculative roles of mast cell functions. We have no

answer to the title of this review yet, but we hope to stimulate

discussions and, most of all, new experiments that may eventu-

ally provide the answer in the future.

The Receptor Tyrosine Kinase Kit and Mast Cells:
A Close Liaison in Its 35th Year
Mast cells are strictly tissue-localized cells, and under normal

healthy conditions, they are undetectable in bone marrow

and peripheral blood. Bone marrow transplantation (Kitamura

et al., 1977) and mast cell progenitor identification (Rodewald

et al., 1996) established that mast cells belong developmentally

to the hematopoietic lineage. The mutation underlying the

phenotype of dominant white spotting (W) mouse strains

(Russell, 1979) was linked to mast cells by showing that W

mouse mutants are mast cell-deficient (Kitamura et al., 1978).

The reconstitution of donor mast cells in recipient W mice by

wild-type bone marrow transplantation marked the beginning

of the era in which W mice served as in vivo models to inves-

tigate mast cell functions. White spotted mice exist in variable

phenotypic penetrations, depending on the different naturally

occurring alleles, termed KitW, KitWv, and KitW-sh (Nocka

et al., 1990), to name those most relevant for the mast cell

field. The receptor tyrosine kinase Kit maps to the mouse

W locus, and Kit mutations are causal for the phenotypes of

W mice, including their mast cell deficiency. Kit ligand (Kitl) is

a microenvironmental stromal cell factor encoded at the Steel
14 Immunity 37, July 27, 2012 ª2012 Elsevier Inc.
(Sl) locus. Sl mutants also lack mast cells (Galli and Kitamura,

1987).

The vast majority of the existing in vivo mast cell literature is

based on the viable compound mutant KitW/Wv mouse. The KitW

allele-encoded protein cannot be expressed on the cell surface,

while the kinase activity is impaired in the KitWv-encoded protein

(Nocka et al., 1990). KitW/Wv mice are severely affected by their

Kit deficiency in several tissues. In the context of the long-

standing use of these mutants as mast cell deficiency models,

it is worth to consider some key aspects of Kit biology. Kit is

expressed inside and outside of the hematopoietic system in

cell types of diverse developmental origin. Within the immune

system, Kit is an important hematopoietic stem and progenitor

cell marker, which is expressed in these cell types at high levels.

In most lineages, Kit expression is lost with differentiation. The

notable exception are mast cells in which Kit expression remains

very strong throughout their development. Kitl is a key growth

factor for mast cells in vivo. The block in mast cell development

in Kitmutant mice is, however, not absolute. In vitro, interleukin-

3 (IL-3) can drive the development of bone marrow-derived mast

cell cultures (BMMCs) from Kit mutant bone marrow cells. In

contrast to the strict requirement for Kit signaling in mast cells

in vivo, IL-3 is sufficient and the most potent mast cell growth

factor in vitro (Nabel et al., 1981; Yokota et al., 1984; Yung

and Moore, 1982), where Kitl synergizes with IL-3 for optimal

mast cell growth. Surprisingly, steady state mast cell develop-

ment was normal in Il3-deficient mice (Lantz et al., 1998), under-

scoring fundamentally different growth requirements in vivo and

in vitro. The mast cell deficiency of KitW/Wv mice can be partially

overcome by chronic inflammatory stimuli in vivo (Gordon and

Galli, 1990; Waskow et al., 2007), which may limit the use of

these mice under certain conditions of chronic inflammation.

In addition to their mast cell defect, KitW/Wvmice have multiple

hematopoietic abnormalities that include compromised fitness

of hematopoietic stem and progenitor cells (Russell, 1979),

severe macrocytic anemia (Waskow et al., 2004), impaired

T development in the thymus (Waskow et al., 2002), a shift in

intraepithelial T cells in the gut in favor of TCR ab+ and against

TCR gd+ cells (Puddington et al., 1994). Importantly, this Kit

mutant is neutropenic, which may be a major factor affecting

immune responses in this strain (Zhou et al., 2007).

It has been reiterated (Galli and Kitamura, 1987; Grimbaldes-

ton et al., 2005) that numbers of basophils are not affected in

KitW/Wv mice. This claim appears to rest on an older study based

on the morphological identification of basophils in peripheral

blood (Jacoby et al., 1984). Morphology and cell surfacemarkers

of mouse basophils have been controversial (Lee and McGarry,

2007). Based on flow cytometric phenotype, cytokine (IL-4)

production, and other functions, the current consensus on

mouse basophils is that these cells can be identified by their

DX5+Kit-FcεRI+ phenotype (Karasuyama et al., 2011; Siracusa

et al., 2011 and references therein). Using this definition, two

recent reports found 75%–90% reduced basophil numbers in

the peripheral blood (Mancardi et al., 2011) and spleen (Feyera-

bend et al., 2011) of KitW/Wv mice. This paucity of basophils may

be a contributing factor in phenotypes of KitW/Wv mice that have

been attributed to the lack of mast cells.

More recent publications have often used KitW-sh/W-sh mice for

mast cell studies because these mice have fewer defects
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compared to KitW/Wv mice (Grimbaldeston et al., 2005). In

contrast to KitW/Wv mice, KitW-sh/W-sh mice are fertile and have

normal red blood cell numbers. Initially, KitW/Wv/KitW-sh/W-sh

mice were thought to have normal levels of all major classes of

hematopoietic cells including leukocytes (Grimbaldeston et al.,

2005 and references therein). However, a study found neutro-

philia, megakaryocytosis, and thrombocytosis in KitW-sh/W-sh

mice, whichwere associated with splenomegaly and histological

aberrations of the spleen (Nigrovic et al., 2008). The KitW-sh

allele is characterized by a large genomic inversion on chro-

mosome 5, the 30 end of which is located �75 kb upstream

of the Kit locus (Berrozpe et al., 1999; Nigrovic et al., 2008).

This genomic rearrangement does not only deregulate the

temporal and tissue-specific expression of Kit itself, which can

explain the mast cell deficiency (Berrozpe et al., 2006), but also

potentially leads to the disruption or deregulation of the 27 genes

located in the inverted genomic region, including disruption of

Corin, which causes cardiac hypertrophy (Nigrovic et al., 2008).

In summary, Kit is an essential receptor driving mast cell devel-

opment in vivo, and mice carrying inactivating mutations in Kit

have remained the main models in studies of mast cell functions.

However, in addition to their mast cell deficiency, Kit mutants

suffer from further defects in the hematopoietic system.

Roles of Kit Outside of the Immune System
Kit functions are important in germ cells and melanocytes (Be-

smer et al., 1993), intestinal pacemaker cells (Sergeant et al.,

2002), neuronal cells (Milenkovic et al., 2007), and liver metabo-

lism (Magnol et al., 2007). Kit-related phenotypes in these tissues

may indirectly perturb immunological experiments locally or

systemically, e.g., an altered threshold of nociception may influ-

ence inflammatory responses. Roles of mast cells have often

been studied in organs that are intrinsically affected by Kitmuta-

tions. In Kit mutant mice, intestinal pacemaker cells of Cajal fail

to develop, which results in insufficient intestinal peristaltic

movement (Huizinga et al., 1995; Maeda et al., 1992), gut dilata-

tion, and delayed intestinal passage times (Snoek et al., 2011).

These pathophysiological parameters can influence the compo-

sition of intestinal microbiota, or intestinal pathology. KitW/Wv

mice aremore susceptible to enterobacterial sepsis in the caecal

ligation and puncture (CLP) model (Echtenacher et al., 1996).

This higher vulnerability of KitW/Wv mice has been explained by

their mast cell deficiency, leading to insufficient production of

protective TNF-a. However, the situation in the CLP model is

complex because TNF-a has also been implicated in a worse

outcome in a severe version of the model (Piliponsky et al.,

2010). In addition, an involvement of the Kit mutations in CLP

experiments in KitW/Wv mice cannot be excluded because the

cecum, which is the target organ in this model, is highly dilated

in KitW/Wv mice, and this intestinal phenotype on its own may

impair resolution of the puncture. Collectively, the involvement

of Kit signaling in the development or function of cells outside

of the immune systemmay have an impact onmast cell research

in Kit mutants.

Mast Cell Reconstitution of Kit Mutant Mice: A Gold
Standard Less Golden?
It is obvious that the multitude of non-mast cell-related defi-

ciencies in Kit mutants may influence the outcome of experi-
ments addressing in vivo mast cell functions. Bone marrow

transplantation can reconstitute wild-type hematopoietic cells

in KitW/Wv mice, and it cures their mast cell deficiency and, for

example, their anemia, but their mast cell defect is not selectively

corrected. In contrast, reconstitution ofKitmutant mice only with

BMMCs without hematopoietic stem cells appeared to offer

a solution for this problem (Nakano et al., 1985; Tsai et al.,

2005). The rational appears compelling: If mast cell-reconsti-

tuted Kit mutant mice show a reversal of the presumed mast

cell-dependent phenotype, e.g., if wild-type mice are resistant

to sepsis, KitW/Wv mice are susceptible, and mast cell-repleted

KitW/Wv mice are resistant, the conclusion seemed warranted

that the mast cell deficiency of KitW/Wv mice was the responsible

cellular defect underlying susceptibility (Echtenacher et al.,

1996). Effectively, the mast cell reconstitution system has

been, by and large, the mainstay to test mast cell functions

in vivo, and this approach has been considered a pillar of immu-

nology (Kawakami, 2009).

Does mast cell reconstitution lead to physiological mast cell

populations? Although BMMCs can adopt the phenotype of

normal tissue mast cells after in vivo transfer (Nakano et al.,

1985), numbers, distribution, and functional responses of

reconstituted mast cells may not be physiological (Ebmeyer

et al., 2010; Grimbaldeston et al., 2005; Nakano et al., 1985).

The distribution is a worthwhile consideration because mast cell

numbers may not only be lower than normal in one tissue but

also higher than normal in another. The route of transfer (local

versus systemic) matters, and the reconstitution can vary

between individual mice. Mast cell reconstitution has regularly

been demonstrated histologically, e.g., acquisition of a con-

nective tissue mast cell phenotype by safranin staining, but it is

difficult to go further and prove that engrafted mast cells behave

immunologically like normal endogenously developedmast cells.

Recent experiments have uncovered that BMMC reconstitu-

tion can erroneously lead to the reversal of a phenotype in Kit

mutants. Disturbingly, experiments comparing conventional

Kit mutant mast cell-deficient mice and mast cell reconstituted

Kit mutant mice versus selectively mast cell-deficient mice

wild-type for Kit (Dudeck et al., 2011; Feyerabend et al., 2011,

discussed in Katz and Austen, 2011) led to fundamentally

different results. Roers and colleagues studied contact hyper-

sensitivity in the skin. These authors found thatmast cell-specific

deletion of Il10 in Mcpt5-Cre mice, a Cre transgene that deletes

LoxP-site flanked gene segments in connective tissue mast

cells, failed to reveal a role for mast cell-derived IL-10 in the regu-

lation of contact hypersensitivity (Dudeck et al., 2011). Earlier

studies using the mast cell reconstitution approach by transfer

of Il10-deficient BMMCs into Kit mutants concluded that mast

cell-derived IL-10 is important (Grimbaldeston et al., 2007).

Further conflicting results comparing Kit mutant mast cell-defi-

cient and Kit-independent mast cell-deficient mice were found

in experiments on the roles of mast cells in autoimmunity (dis-

cussed in Brown et al., 2012; Rodewald, 2012). On the basis of

work in KitW/Wv mice, key roles for mast cells had been reported

in the K/BxN autoantibody-driven arthritis models (Lee et al.,

2002) and in myelin oligodendrocyte glycoprotein (MOG)35–55
peptide immunization-driven experimental autoimmune en-

cephalomyelitis (EAE) (Secor et al., 2000, reviewed in Benoist

and Mathis, 2002; Sayed et al., 2008). In both cases, the mast
Immunity 37, July 27, 2012 ª2012 Elsevier Inc. 15



Immunity

Perspective
cell involvement was demonstrated by reconstitution of KitW/Wv

mice with BMMCs. Surprisingly, Kit-independent mast cell-

deficient Cpa3Cre/+ mice were fully susceptible to the K/BxN

arthritis and to EAE (Feyerabend et al., 2011). In these studies,

KitW/Wv mice were included in the experiments as controls. For

the K/BxN arthritis, the susceptibility of KitW/Wv mice was

confirmed, but notably not for EAE (Feyerabend et al., 2011).

Questions about the importance of mast cells in arthritis had

been raised earlier. Whereas KitW/Wv mice were not only pro-

tected in the K/BxN model but also in anti-collagen antibody-

induced arthritis, KitW-sh/W-sh mice were susceptible in both

models (Mancardi et al., 2011; Zhou et al., 2007).

Inevitably, these examples strongly suggest that Kit muta-

tions can contribute to the phenotype of mast cell experiments,

and that mast cell-reconstituted Kit mutants can behave

differently from normal mice with and without mast cells, a

divergence that remains to be understood. These examples of

fundamental discrepancies between Kit mutant mast cell-

deficient mice and mast cell-deficient mice wild-type for Kit

may remain the exception. We believe, however, that the robust-

ness of the Kit-based system, including mast cell reconstitution,

is doubtful as soon as a single example has been found in which

the system did not report with fidelity on in vivo mast cells

functions. Although cumbersome and possibly of little reward,

it may be prudent to readdress key mast cell findings based

on Kit mutant mice also in Kit-independent models.

Kit-Independent Mast Cell-Deficient Mice: Problems,
Solutions, and Limitations
The quest to develop Kit-independent mast cell-deficient mice

was aided by advances in gene targeting and transgenesis.

The identification of genes expressed specifically in mast cells

helped to identify ‘‘driver loci’’ that are instrumental for genetic

manipulation of mast cells in vivo. Some years ago, several

groups reported the generation of mice expressing Cre recom-

binase under the control of mast cell protease genes (Feyera-

bend et al., 2009; Müsch et al., 2008; Scholten et al., 2008),

and in 2011, four laboratories used their mice or additionally

generated lines to obtain Kit-independent mast cell-deficient

mouse strains (Dudeck et al., 2011; Feyerabend et al., 2011; Lilla

et al., 2011; Otsuka et al., 2011). The strains differ in the selected

gene loci, the methods to drive ectopic gene expression in mast

cells (targeted knock-in or transgenic overexpression), and the

depletion mechanisms. In brief, Dudeck et al. (2011) and Otsuka

et al. (2011) used the diphtheria toxin (DT) system for depletion of

the mast cell lineage, Feyerabend et al. (2011) ablated mast cells

constitutively by exploiting the genotoxicity of Cre-recombinase,

and Lilla et al. (2011) depleted mast cells by Cre-mediated dele-

tion of an apoptosis suppressor gene. Strain-specific character-

istics are summarized in Table 1.

Dudeck et al. (2011) expressed Cre recombinase from the

first exon of mouse mast cell protease 5 (Mcpt5) in a bacterial

artificial chromosome (BAC) transgene harboring the Mcpt5

locus (Scholten et al., 2008) and used Mcpt5-Cre to activate

a Cre-dependent expression cassette in the ROSA26 locus of

the mast cell lineage. Two different versions of mice have been

presented. Depending on the ROSA26 allele, expression of the

catalytically active diphtheria toxin A subunit (R-DTA) or of the

human diphtheria toxin receptor (iDTR) was induced. Therefore,
16 Immunity 37, July 27, 2012 ª2012 Elsevier Inc.
Mcpt5-Cre x R-DTAmice represent a model of constitutive mast

cell deficiency, while inMcpt5-Cre x iDTRmicemast cell ablation

can be induced by repetitive diphtheria toxin injections. Given

that expression of the Mcpt5 transgene is restricted to connec-

tive tissuemast cells (CTMCs), CTMCs can be targeted, whereas

mucosal mast cell (MMC) compartments remain unaffected.

Deletion was most complete in peritoneal mast cells. Remaining

numbers of skin mast cells varied from 3.5% (ear skin) to 11%

(abdominal and back skin) in R-DTA mice. In iDTR mice, mast

cells were reduced to 2.5% (ear skin) after DT injections. Long-

term experiments inMcpt5-Cre x iDTRmice required continuous

DT injections because, within 3 weeks after the last DT injection,

�10% of normal mast cell numbers reappeared. A major advan-

tage of the Mcpt5-Cre mice is that these mice can also be used

to delete floxed genes in CTMCs (Dudeck et al., 2011) and that

numbers of basophils are, at least in the bone marrow, not

impaired. Possible disadvantages are potential side effects of

toxin applications (Lahl and Sparwasser, 2011), the mast cell

rebound after ablation, which complicates long-term experi-

ments, and the exclusion of MMCs.

The mast cell-deficient mouse reported by Otsuka et al. (2011)

and Sawaguchi et al. (2012) is an inducible model based on

DTR expression. In mast cell-specific enhancer-mediated toxin

receptor-mediated conditional cell knockout (Mas-TRECK)

mice, DTR expression is driven as a transgene by an Il4 intronic

enhancer element that normally drives IL-4 expression in mast

cells. As in the case of Mcpt5-Cre x iDTR mice, repetitive toxin

injections are required for mast cell depletion. The authors

achieved full depletion of mast cell compartments in peritoneal

cavity, ear, and back skin, stomach, and mesentery, which

included CTMCs and MMCs. It remains to be tested whether

under certain inflammatory conditions mast cells can overcome

the depleting effect of DT. Of note, Mas-TRECK mice are fully

deficient for both mast cells and basophils. As a result, Mas-

TRECK mice are fully protected (Otsuka et al., 2011; Sawaguchi

et al., 2012) from mast cell-dependent IgE-mediated local and

systemic anaphylactic responses aswell as basophil-dependent

IgE-mediated chronic allergic inflammation (Karasuyama et al.,

2011). An additional mouse strain selectively lacking basophils

but not mast cells has been generated by a similar strategy

(Bas-TRECK) (Otsuka et al., 2011; Sawaguchi et al., 2012), and

the authors propose to analyze mast cell functions by compar-

ison of Mas-TRECK and Bas-TRECK mice, or to make use of

a ‘‘window,’’ in which basophils, but not mast cells, have

rebound from the bone marrow after depletion.

Cre recombinase is widely used to delete and recombine DNA

fragments within the mouse genome between introduced loxP

sites, but Cre can also be toxic independent of loxP target sites

when its expression is very strong or long lasting (Schmidt-

Supprian and Rajewsky, 2007). In the mast cell-deficient mouse

made by Feyerabend et al. (Cpa3Cre/+), the genotoxic effect of

Cre constitutively deleted the entire mast cell lineage. An ex-

pression construct, containing a codon-improved cDNA of Cre

(iCre), preceded by an untranslated exon and an intron for RNA

stability (references in Feyerabend et al., 2011), was introduced

into the first exon of the Cpa3 locus by homologous recom-

bination in embryonic stem cells. TheCpa3 locus is very strongly

expressed in mast cells, as highlighted in a reporter knockin

mouse (unpublished data). Cre expression from the Cpa3



Table 1. Overview of Kit-Independent Mast Cell Deficiency Mouse Models

Mcpt5-Cre Mas-TRECK Cre-Master Cpa3-Cre

Official Nomenclature Tg(Cma1-cre) ARoer Cpa3tm3(icre)Hrr Tg(Cpa3-cre)3Glli

Reference Dudeck et al., 2011 Otsuka et al., 2011;

Sawaguchi et al., 2012

Feyerabend

et al., 2011

Lilla et al., 2011

Mast Cell Specificity Mcpt5 BAC transgene (67 kb 50

and 46 kb 30)
IL4 intronic enhancer

(4.5 kb) plus IL4

promoter (0.76 kb)

transgene

targeted knockin

into the

endogenous

Cpa3 locus

Cpa3 promoter

(0.78 kb)

transgene

Induced or Depleted

Additional Loci

R-DTA iDTR not required not required Mcl-1fl/fl

Depletion Mechanism constitutive:

Cre-mediated

induction of DTA

expression from

the ROSA26 locus

inducible:

Cre-mediated

induction of the

DT-receptor +

repetitive

DT injections

inducible: DTR

expression +

repetitive

DT injections

constitutive:

Cre-mediated

genotoxicity

constitutive:

conditional

knockout of the

intracellular

anti-apoptotic

factor Mcl-1

Mast Cell Depletion up to 97% of CTMCs, depending

on the DT injection protocol; MMCs

are not depleted

deficient for

CTMCs and MMCs

(steady state)

deficient for CTMCs

and MMCs (steady

state and upon

inflammation)

92%–100%

including

CTMCs and

MMCs

Basophils not affected entirely depleted reduced to 38% reduced to 22%–42%

Significant Alterations

in Other Blood Cells

not detected not detected not detected macrocytic anemia,

neutrophilia

IgE-Mediated

Anaphylactic Response

not analyzed absent absent reduced

MC Recurrence steady state: MCs back to 10% at

1–3 weeks after last DT injection

steady state:

MC deficiency

lasts >18 days

after last DT

injection; blood

basophil numbers

are normal again

by day 12

steady state:

no

inflammation

or parasite

infections: no

not analyzed

This table summarizes genetic and functional properties of recently developed Kit-independent mast cell deficiency models. Official nomenclature

refers to the entry at the Mouse Genome Informatics (MGI) Database, The Jackson Laboratories.
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locus leads to a p53-dependent loss of mast cells, probably due

to chromosomal lesions brought about by Cre action on endog-

enous pseudo-loxP sites in the mouse genome (discussed in

Feyerabend et al., 2011). Cre-mediated mast cell eradication

(Cre-Master; Cpa3Cre/+) mice were entirely mast cell-deficient

for both CTMCs and MMCs in peritoneal cavity, ear skin, and

intestinal mucosa, and they were protected from passive local

or systemic anaphylaxis. Chronic inflammatory conditions did

not overcome the mast cell deficiency. This holds true for

CTMCs, as demonstrated in PMA-induced dermatitis, and for

MMCs in the intestine upon nematode infections. Detailed

analyses of hematopoietic cell subsets and blood parameters

revealed a normal steady-state immune system in Cre-Master

mice. Even though Cpa3 expression is not absolutely restricted

to the mast cell lineage, expression levels in other lineages are

tooweak to render Cre recombinase toxic, except for a reduction

of basophils to �40% of wild-type mice. Further work will be

required to analyze whether the residual basophils are function-

ally impaired due to Cre expression in this lineage.

Lilla et al. developed a Cpa3-Cre transgenic mouse strain,

carrying a 780 bp region of the Cpa3 promoter in front of the
Cre recombinase cDNA. This mouse was crossed to mice with

floxed myeloid cell leukemia sequence 1 (Mcl1) alleles to specif-

ically delete the Mcl1 gene in mast cells. Mcl1 is an intracellular

antiapoptotic factor and conditional deletion of its gene in Lck-

Cre or CD19-Cre mice has previously been shown to induce

depletion of T and B cell lineages. Lilla et al. analyzed a compre-

hensive set of organs, including connective andmucosal tissues,

for the presence or absence of mast cells, and reported 92%–

100% mast cell depletion. The relatively largest residual mast

cell numbers were found in back skin and the peritoneal cavity.

In addition, basophil numbers were reduced by 58%–78% in

spleen and bone marrow, respectively. These mice also showed

a 56% increase in splenic neutrophils and macrocytic anemia.

The reasons for these hematological abnormalities are unclear,

but it is possible that Cpa3 expression outside of the mast cell

lineage, e.g., in other myeloid progenitors and in the majority of

progenitor T cells (Feyerabend et al., 2009), contributes to

some of these alterations. In any case, it is unlikely that these

defects are related to the mast cell deficiency because other

mice selectively lacking mast cells did not show deviations in

neutrophils or erythrocytes.
Immunity 37, July 27, 2012 ª2012 Elsevier Inc. 17
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Collectively, it is likely that these strains are useful in mast cell

research. These mice shall directly allow assessments on the

roles of mast cells independent of Kit defects. By comparison

to Kit mutants, they will also shed light on the roles that

Kit played in particular physiological or pathological questions

that were studied in the context of mast cell functions. Further

advantages of these strains are their ease of breeding, which

will facilitate the generation of mast cell-deficient mice on

immunologically interesting genetic backgrounds, which criti-

cally effect immunological responsiveness, like T helper cell

skewing and tissue transplantation, to name a few. Likewise, it

will be easier to study the role of mast cells in complex immuno-

logical diseases like diabetes (NOD) and rheumatoid arthritis, or

to combine mast cell deficiency with transgenic models. Finally,

the possibility to conditionally delete genes in mast cells will be

crucial for rigorous evaluation of specific gene functions

in mast cells.

Does Mast Cell Deficiency Exist in Humans?
Genetic analysis of human patients is an important tool for the

discovery of cellular and molecular mechanisms underlying

immunity and for the identification of mutations associated

with clinical disease. To our knowledge, humans lacking mast

cells have not been reported. A possible but far-fetched explana-

tion could be lethality prior to birth caused by lack of mast cells.

Alternatively, lack of mast cells does not cause immunodefi-

ciency or immune deviation, in which case individuals are

clinically inconspicuous. If mast cell deficiency in humans, as

in mice, were neither lethal nor disease-causing, individuals

lacking mast cells might be ‘‘hidden’’ in the nonallergic popula-

tion. It shall be important to gain insights into the ‘‘positive’’

immunological roles of mast cells also in humans before global

interference with mast cells or their functions can be considered

a therapeutic goal in the treatment or prevention of allergic

disease. In selectively mast cell-deficient mice, steady state

immune parameters (numbers and proportions of large sets of

lymphocyte and myeloid subpopulations; serum Ig titers; hema-

topoietic stem and progenitors in bone marrow; T helper cell-2-

dependent IgG1 antibody response including class switching

and somatic hypermutation) were all unaffected by the lack of

mast cells (Feyerabend et al., 2011). A teleological argument,

that mast cells must be important because they exist, is not

helpful in deciphering the biological functions of mast cells.

The hurdle in screening for those myeloid cell types that cannot

readily be identified automatically in peripheral blood, and the

unexpectedly restricted spectrum of immunodeficiency in hu-

mans devoid of dendritic cells has recently been discussed

(Collin et al., 2011). Although analogous data for mast cells are

lacking, similar considerations for the identification of mast cell

deficiency should apply. In brief, while human mast cell defi-

ciencymight have tremendous implications for mast cell biology,

the search for such individuals remains complex.

Experimental Basis for Assumed Mast Cell Functions
in the Immune System
A critical assessment of immunological and nonimmunological

roles of mast cells requires considerations of the underlying

experimental evidence. We consider mast cell functions here in

the context of innate immunity, allergy, adaptive immunity, auto-
18 Immunity 37, July 27, 2012 ª2012 Elsevier Inc.
immunity, and vascular diseases and in association with tumors,

knowing that this list is not exhaustive. We deem it useful to

operationally distinguish protective, harmful, and currently ill-

defined roles of mast cells (Figure 1). In the latter, we refer to

reports on mast cell functions that have either been shown in

the context of Kit deficiency only or that have not been confirmed

when tested in Kit-independent models (e.g., deviated Th2

response, antibody-driven arthritis, EAE, or the role of IL-10 in

contact hypersensitivity) (Dudeck et al., 2011; Feyerabend

et al., 2011; Katz and Austen, 2011; Knight et al., 2000) or in

cases of conflicting data between Kit mutants (e.g., in collagen-

induced arthritis (Zhou et al., 2007), EAE (Bennett et al., 2009;

Li et al., 2011; Piconese et al., 2011; Secor et al., 2000), or tumor

growth (Gounaris et al., 2007; Sinnamon et al., 2008).

Protective Roles of Mast Cells
Mast cells are able to degrade the snake venom toxin sarafotoxin

6b (S6b) (Metz et al., 2006), and the responsible enzyme for this

protective C-terminal cleavage is Cpa3 (Schneider et al., 2007).

Analysis of a panel of now available mouse mast cell protease

mutants revealed that mouse mast cell protease-4 (Mcpt4),

a chymase, can degrade helodermin, a toxic component of

Gila monster venom, and reduce the morbidity and mortality

induced by venoms from scorpion species (Akahoshi et al.,

2011). Although the underlying data on toxin degradation are

compelling, and such mechanisms of toxin inactivation may be

vital for mice in the wild, more or broader functions of mast cell

proteases in immunity may still be uncovered. It seems to

confound immunological wisdom of receptor diversity and

antigen recognition that mast cells use individual proteases to

degrade single or small groups of toxins.

Endothelin 1 (ET-1), the most potent blood pressure regulating

endogenous peptide, is highly homologous in peptide sequence

to S6b. ET-1 can activate mast cells by binding to endothelin

receptors (ET-A) on the surface of mast cells. In response,

mast cells degranulate and release mediators including IL-6

and TNF-a (Matsushima et al., 2004). Mast cell proteases

degrade ET-1, and studies using pharmacological inhibitors

initially concluded that a chymase was the responsible enzyme

(Maurer et al., 2004). However, mice expressing an inactive

form of Cpa3 with no other defects in mast cell proteases failed

to degrade ET-1, demonstrating that Cpa3, and not chymase

activity, is essential (Schneider et al., 2007). The physiological

role of endothelin degradation by mast cells remains enigmatic.

The test for mouse survival upon intraperitoneal injection of

ET-1 (Maurer et al., 2004; Schneider et al., 2007) is an artificial

system, and the physiological or pathological implications,

possibly involving the local regulation of blood pressure, of this

response loop (activation by and degradation of ET-1 by mast

cells) are elusive.

Mast cells have been reported to play important roles in resis-

tance to bacterial and parasitic infections which has been

comprehensively reviewed (Abraham and St John, 2010). In

addition to the CLP experiments referred to above (Echtenacher

et al., 1996), the role of mast cells in bacterial resistance has

originally been studied by subjecting KitW/Wv mice to intraperito-

neal injection of Klebsiella pneumonia (Malaviya et al., 1996). The

impaired clearance of this infection by Kit mutant mice sug-

gested that mast cells can promote survival during a bacterial
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infection by promoting neutrophil recruitment, and evidence

pointed at an important role of TNF-a in this process. These

findings have been substantiated independently of a Kit

mutant mouse by a report showing that Mcpt6�/� mice cannot

efficiently clear Klebsiella pneumoniae from the peritoneal

cavity (Thakurdas et al., 2007).Mcpt6�/� mice also have pheno-

types different from wild-type mice in Trichinella (T.) spiralis

infection (Shin et al., 2008), in the K/BxN serum transfer arthritis

(Shin et al., 2009), in allograft tolerance (de Vries et al., 2010), in

experimental colitis (Hamilton et al., 2011), and in aortic aneu-

rysm formation (Zhang et al., 2011). It is intriguing that a single

tryptase seems to be directly or indirectly involved in the regu-

lation of such diverse pathologies. However, Mcpt6 mRNA

expression, though strongest in mast cells, is not absolutely

restricted to mast cells but expression is also found in subsets

of macrophages and dendritic cells, and in other tissues (www.

immgen.org). Hence, although the experiments listed above

invoke mast cells as the only source of Mcpt6, formal proof of

an involvement of mast cells in these models would require

deletion of Mcpt6 specifically in mast cells by conditional gene

targeting.

Immunity against parasites is among the most widely believed

mast cell functions. However, evidence from specific host-

pathogen interactions is limited. The expulsion of T. spiralis

was delayed in KitW/Wvmice (Ha et al., 1983). Compound KitW/Wv

IL-3�/� mice displayed delayed expulsion of the nematode

Strongyloides venezuelensis but not of Nippostrongylus (N.)

brasiliensis (Lantz et al., 1998), suggesting roles for IL-3 or Kit

or mast cells in immunity against some parasites. More specifi-
cally,Mcpt1 null mice showed a substantially delayed expulsion

of T. spiralis and increased deposition of muscle larvae.

However, inN. brasiliensis-infectedMcpt1�/�mice, worm expul-

sion was not impaired (Knight et al., 2000). Interestingly, a

comparison of T. spiralis infections in KitW/Wv and Mcpt1�/�

mice revealed comparably delayed parasite elimination and

ameliorated infection-associated enteropathy in both strains of

mice, while the Th2 responses were significantly reduced only

in KitW/Wv but not in Mcpt1�/� mice (Lawrence et al., 2004).

This is another example of dissociated phenotypes comparing

Kit mutants and specific mast cell mutants. Finally, immunity

to N. brasiliensis and to H. polygyrus was unimpaired in mast

cell-deficient Cpa3Cre/+ mice (unpublished data). In conclusion,

the involvement of mast cells or their products in nematode

expulsion appears to be a selective process, and more work

will be required to understand the mechanisms underlying this

parasite specificity.

From the data summarized here, a picture emerges in which

mast cells may contribute to resistance against certain patho-

gens but one cannot assume that mast cells are broadly

involved in immunity against bacteria, viruses, and parasites.

More work will be required to understand the potential selec-

tivity of protective mast cell responses.

Harmful Roles of Mast Cells
Roles of mast cells in anaphylaxis have been documented

in several independent systems. Kit mutants are defective in

IgE-driven local and systemic anaphylaxis (Becker et al., 2011;

Finkelman, 2007; Martin et al., 1989; Zhou et al., 2007). Several
Immunity 37, July 27, 2012 ª2012 Elsevier Inc. 19
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Kit-independent mast cell deficiency models have been tested

for susceptibility to passive IgE-mediated local and systemic

type I hypersensitivity (Feyerabend et al., 2011; Lilla et al.,

2011; Sawaguchi et al., 2012). Depending on the extent of mast

cell deficiency, anaphylaxis was abrogated or strongly amelio-

rated. A key pathophysiological parameter in anaphylaxis-asso-

ciated shock, the drop in body temperature, requires histamine

synthesis, which is ablated in mice deficient for histidine decar-

boxylase (Makabe-Kobayashi et al., 2002). Hence, there is now

definitive evidence for the essential role of mast cells in the initi-

ation of IgE-mediated allergic and anaphylactic reactions.

In mouse models of asthma, animals undergo repetitive

immunization and challenge with Ova, and airway hyperresist-

ance (AHR) is measured upon methacholine inhalation. Although

it is generally accepted that IL-4, which could be provided

by mast cells and basophils, is a central player in development

of AHR (Maes et al., 2012), the extent of mast cell contribution

in this model of mouse asthma seems to be highly dependent

on the immunization protocol (Williams and Galli, 2000) and on

the genetic background of the mice (Becker et al., 2011).

Combined studies on Mas-TRECK and Bas-TRECK mice

demonstrated the involvement of mast cells in the effector phase

of AHR (Sawaguchi et al., 2012).

Reports on the role of mast cells in contact hypersensitivity

(CSH) have been controversial (Biedermann et al., 2000; Grim-

baldeston et al., 2007; discussed in Dudeck et al., 2011),

perhaps partially because of different skin reactions that are

summarized as ‘‘CHS.’’ The classical assay is done by sensiti-

zation of mice with small haptens or irritants like DNFB, TNCB,

or oxazolone on the shaved trunk skin, followed by challenge

on the ear skin a few days later, leading to ear swelling and

inflammation. This response is regarded as a prototype of

T cell-mediated delayed type hypersensitivity (DTH). However,

several phases of ear swelling can be observed during the

whole time course, which probably depend on different mecha-

nisms and effector cell types. Dudeck et al. demonstrated

that DNFB or FITC cause ear swelling already within 2 hr and

that this response is mast cell dependent and sensitization inde-

pendent. Ear swelling 24–48 hr after challenge and migration of

DCs to the draining lymph nodes is also facilitated by mast cell

activation in CHS (Dudeck et al., 2011; Otsuka et al., 2011). Inter-

estingly, KitW-sh/W-sh and KitW/Wv mice, but not mast cell-defi-

cient mice wild-type for Kit, showed exaggerated and prolonged

CHS responses (ear swelling 4–6 days after challenge) (Dudeck

et al., 2011; Grimbaldeston et al., 2007). IL-10 production might

here be inhibitory but it is not mast cell-derived IL-10 in themodel

examined by Dudeck et al. (2011).

Mast cells have been associated with vascular diseases

and tissue remodeling in humans. Several mast cell protease

knockout mice have been used in different disease models. In

experimental abdominal aortic aneurysm, tryptase (Mcpt6) and

chymase (Mcpt4)-deficient mice, but not Mcpt5�/� mice, had

significantly reduced inflammatory cell infiltrations and showed

less aortic expansion and lesions (Sun et al., 2009; Zhang

et al., 2011). Experiments on epidermal burn injury showed

that Mcpt4�/� or Mcpt5�/� mice, but not mice lacking Mcpt6

or Mcpt7 proteins or mice lacking Cpa3 activity, were protected

from scald injury. Topical application of the respective enzymes

restored susceptibility (Younan et al., 2010).
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In sum, harmful roles of mast cells are among the best-charac-

terized consequences of mast cell activation.

Ambiguous Roles of Mast Cells
The conclusion that mast cells have a critical protective role in

resistance to enteromicrobial sepsis in the CLP model was

initially based on experiments in KitW/Wv mice (Echtenacher

et al., 1996). However, a recent study using KitW/Wv and

KitW-sh/W-sh revealed a more complicated picture: depending

on the mouse strain background, the nature of the mutation

resulting in a mast cell deficiency, and type and severity of

infection, mast cells can have no effect, promote survival, or

increase mortality (Piliponsky et al., 2010). To our knowledge,

the role of mast cells in survival of CLP has not been confirmed

in Kit-independent mast cell-deficient mice, or in knockout

mice specifically and only lacking mast cell products, and

hence it cannot be excluded that Kit defects contribute to the

variability of the various strains in CLP sepsis experiments.

Mast cells have also been linked to adaptive immunity,

tolerance, and graft rejection. A link between mast cells and

regulatory T (Treg) cells has been suggested. The Treg cell

frequency is reduced in lymphoid organs of KitW-sh/W-sh mice

(Piconese et al., 2011). It is currently unknown whether this

phenotype is due to the absence of mast cells or not. In a model

of tolerance induction toward allogeneic skin grafts, mediated

by allogeneic splenocyte transplantation plus anti-CD154

(CD40 ligand), Noelle et al. reported an essential role of mast

cells in Treg cell-dependent peripheral tolerance (Lu et al.,

2006). Allogeneic F1 C57BL/6 (B6) 3 BALB/c skin was

accepted in tolerized B6 recipients but rejected in tolerized

KitW-sh/W-sh mice. However, in this setting of transplantation

greater than 50% of KitW-sh/W-sh mice even rejected B6 skin,

albeit with delayed kinetics. This rejection seems surprising

given that KitW-sh/W-sh mice were considered to be on the

C57BL/6 background. Minor histocompatibility differences or

lack of tolerance to antigens lacking in KitW-sh/W-sh mice

may account for this phenomenon. Hence, either donor and

host were not syngeneic or mast cell- and melanocyte-bearing

tissues induce an immune response in mice lacking these cells

in the first place. It remains to be determined whether these

histoincompatibilities between donor tissues and KitW-sh/W-sh

hosts, or only the mast cell- deficiency of KitW-sh/W-sh mice,

contributed to the failure of the tolerogenization protocol in

KitW-sh/W-sh mice. In any case, the possibility of an important

mast cell role in the establishment of tolerance to allogeneic

grafts is intriguing, and future work using inbred strains lacking

mast cells may further illuminate this area.

On the basis of studies in Kitmutant mice, major contributions

of mast cells in autoimmune disease models EAE, arthritis, and

type 1 diabetes have been postulated. Considerations on the

role of mast cells in EAE and the K/BxN arthritis model have

been presented above. Regarding diabetes, there has been

a notion that introduction of KitW/Wv mutations into nonobese

diabetic (NOD) mice protected from type 1 diabetes develop-

ment (Hatfield et al., 2010, J. Immunol., abstract). A role for

mast cells in diet-induced obesity (DIO) and diabetes-associated

parameters has been analyzed in KitW-sh/W-sh mice and in mice

treated with pharmacological mast cell stabilizers. Absence of

mast cells, or inhibition of mast cell degranulation, both reduced
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body weight gain in DIO and improved glucose regulation (Liu

et al., 2009), as well as prolonged disease-free survival in dia-

betes-prone rats (Geoffrey et al., 2006). Another study, however,

reported delayed onset of diabetes in NOD mice treated with

anti-FcεRI antibody that activated basophils and mast cells

(Hübner et al., 2011; reviewed in Shi and Shi, 2012).

Finally, roles of mast cells have been described in the areas of

arteriosclerosis, angiogenesis, tissue repair, and tumor growth.

Mast cells are equipped with potent vasoactive molecules,

including Vegf and famous heparin that can regulate vascular

growth and permeability (Oschatz et al., 2011; reviewed in

Kunder et al., 2011). Moreover, mast cells could modulate local

and systemic blood flow via the aforementioned Cpa3-mediated

degradation of endothelin 1. The spectrum of mast cell products

that have the potential to regulate vascular functions and

frequent blood vessel association of mast cells suggest that

mast cells could participate in cardiovascular pathology. Exper-

iments addressing the possible contributions of mast cells to

aortic aneurysm have been stated above. Potential roles of

mast cells in arteriosclerosis have also been suggested (re-

viewed in Bot and Biessen, 2011). Indicators of arteriosclerosis,

including atherogenic lipid profile, vascular inflammation, and

plaque dimensions, were ameliorated in Ldlr�/�KitW-sh/W-sh

mice (Heikkilä et al., 2010; Sun et al., 2007), and the IgE-FcεRI

axis seems to contribute to atherogenesis (Wang et al., 2011).

However, the link between mast cells, diet-induced blood lipids,

and arteriosclerosis remains to be understood more closely.

Given that Kit is expressed in hepatocytes, and that Kit signaling

has been linked to liver and lipid metabolism (Magnol et al.,

2007), mutations in Kit may not be neutral in arteriosclerosis

experiments.

Within the immune system, the impact of mast cell-derived

products on blood vessels may be a key driving force in the

initiation, enhancement, or maintenance of acute and chronic

inflammation. However, in these and further interesting aspects

of mast cell biology, including angiogenesis, tissue remodeling,

wound healing (Gilfillan and Beaven, 2011), and promotion of

or protection from cancer by participation as element of tumor

stroma (Tlsty and Coussens, 2006), the decisive question is

whether or not mast cells are functionally involved. In other

words, although there is ample structural evidence that mast

cells bear and release a host of tissue-modifying substances,

we still know too little about the functional meaning of these

data. Neither the mere presence of mast cells nor of their prod-

ucts are proof of functional importance, leaving the question

unsolved as to whether mast cells are bystanders or culprits

under any particular condition. Collectively, it is evident from

this discussion and the complexity of the underlying experiments

that many roles of mast cells in the immune system and beyond

remain presently ambiguous.

Concluding Remarks
Mast cells remain fascinating cells, yet many facets of their

physiological role in the immune system still need to be deter-

mined and understood.Kitmutantmice have served for decades

as standard models to test in vivo mast cell functions. Because

Kit is critically involved in the development and function of

many stem and mature cells inside and outside of the immune

system, phenotypes unrelated to the mast cell deficiency of Kit
mutants may contribute to the experimental outcome of experi-

ments targeted to reveal only mast cell functions. The reconstitu-

tion of Kit mutants with cultured mast cells has been thought to

reliably indicate whether an observed defect is due to the lack

of mast cells. Recently, the first Kit-independent mast cell-defi-

cient mice have been reported. In thesemice, some key data ob-

tained earlier in the Kit mutant mast cell reconstitution system

have not been confirmed. Of course, this does not discredit all

of the available mast cell literature but cautions that conclusions

based on Kit mutations may not in every case hold true when

tested independently. Comfortingly, experiments in Kit-indepen-

dent models have confirmed some mast cell functions, most of

all the essential role of mast cells in mediating allergic disease

and anaphylaxis. Beyond this expected finding, selectively

mast cell-deficient mice have a surprisingly normal immune

system. In these mice as well as in mutants with specific loss of

mast cell products, mast cells have been shown to play a role

in the context of asthma, contact hypersensitivity, infections

with selective bacterial and parasitic pathogens, degradation of

toxins and endothelin, graft rejection, burn injury, and some

vascular pathologies. In these experiments, mast cells either

contributed to protection (as in toxin degradation or bacterial

resistance) or were harmful (as in anaphylaxis or inflammatory

exaggeration of burn injuries). By contrast, widespread functions

of mast cells in innate and adaptive immunity, as well as in auto-

immunity, immune metabolic diseases, and in many other areas

(Figure 1), remain currently ambiguous. The newmousemutants,

and probably tools to come, shall provide a broader basis for

conclusive experiments that will separate pivotal from less

important functions of mast cells in immunity.
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M., Daëron, M., and Bruhns, P. (2011). Cutting Edge: The murine high-affinity
IgG receptor FcgRIV is sufficient for autoantibody-induced arthritis. J. Immu-
nol. 186, 1899–1903.

Martin, T.R., Galli, S.J., Katona, I.M., and Drazen, J.M. (1989). Role of mast
cells in anaphylaxis. Evidence for the importance of mast cells in the cardiopul-
monary alterations and death induced by anti-IgE in mice. J. Clin. Invest. 83,
1375–1383.
Matsushima, H., Yamada, N., Matsue, H., and Shimada, S. (2004). The effects
of endothelin-1 on degranulation, cytokine, and growth factor production by
skin-derived mast cells. Eur. J. Immunol. 34, 1910–1919.

Maurer, M., Wedemeyer, J., Metz, M., Piliponsky, A.M., Weller, K., Chatterjea,
D., Clouthier, D.E., Yanagisawa, M.M., Tsai, M., and Galli, S.J. (2004). Mast
cells promote homeostasis by limiting endothelin-1-induced toxicity. Nature
432, 512–516.

Menzies, F.M., Shepherd, M.C., Nibbs, R.J., and Nelson, S.M. (2011). The role
of mast cells and their mediators in reproduction, pregnancy and labour. Hum.
Reprod. Update 17, 383–396.

Metz, M., Piliponsky, A.M., Chen, C.C., Lammel, V., Abrink, M., Pejler, G., Tsai,
M., and Galli, S.J. (2006). Mast cells can enhance resistance to snake and
honeybee venoms. Science 313, 526–530.

Milenkovic, N., Frahm, C., Gassmann, M., Griffel, C., Erdmann, B., Birchmeier,
C., Lewin, G.R., and Garratt, A.N. (2007). Nociceptive tuning by stem cell
factor/c-Kit signaling. Neuron 56, 893–906.

Mota, I., and Vugman, I. (1956). Effects of anaphylactic shock and compound
48/80 on the mast cells of the guinea pig lung. Nature 177, 427–429.
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