18 research outputs found

    Targeted disruption of ATM leads to growth retardation, chromosomal fragmentation during meiosis, immune defects, and thymic lymphoma

    Get PDF
    ATM, the gene mutated in the inherited human disease ataxia-telangiectasia, is a member of a family of kinases involved in DNA metabolism and cell-cycle checkpoint control. To help clarify the physiological roles of the ATM protein, we disrupted the ATM gene in mice through homologous recombination. Initial evaluation of the ATM knockout animals indicates that inactivation of the mouse ATM gene recreates much of the phenotype of ataxia-telangiectasia. The homozygous mutant (ATM-/-) mice are viable, growth-retarded, and infertile. The infertility of ATM-/- mice results from meiotic failure. Meiosis is arrested at the zygotene/pachytene stage of prophase I as a result of abnormal chromosomal synapsis and subsequent chromosome fragmentation. Immune defects also are evident in ATM-/- mice, including reduced numbers of B220+CD43- pre-B cells, thymocytes, and peripheral T cells, as well as functional impairment of T-cell-dependent immune responses. The cerebella of ATM-/- mice appear normal by histologic examination at 3 to 4 months and the mice have no gross behavioral abnormalities. The majority of mutant mice rapidly develop thymic lymphomas and die before 4 months of age. These findings indicate that the ATM gene product plays an essential role in a diverse group of cellular processes, including meiosis, the normal growth of somatic tissues, immune development, and tumor suppression

    Nod2 Suppresses Borrelia burgdorferi Mediated Murine Lyme Arthritis and Carditis through the Induction of Tolerance

    Get PDF
    The internalization of Borrelia burgdorferi, the causative agent of Lyme disease, by phagocytes is essential for an effective activation of the immune response to this pathogen. The intracellular, cytosolic receptor Nod2 has been shown to play varying roles in either enhancing or attenuating inflammation in response to different infectious agents. We examined the role of Nod2 in responses to B. burgdorferi. In vitro stimulation of Nod2 deficient bone marrow derived macrophages (BMDM) resulted in decreased induction of multiple cytokines, interferons and interferon regulated genes compared with wild-type cells. However, B. burgdorferi infection of Nod2 deficient mice resulted in increased rather than decreased arthritis and carditis compared to control mice. We explored multiple potential mechanisms for the paradoxical response in in vivo versus in vitro systems and found that prolonged stimulation with a Nod2 ligand, muramyl dipeptide (MDP), resulted in tolerance to stimulation by B. burgdorferi. This tolerance was lost with stimulation of Nod2 deficient cells that cannot respond to MDP. Cytokine patterns in the tolerance model closely paralleled cytokine profiles in infected Nod2 deficient mice. We propose a model where Nod2 has an enhancing role in activating inflammation in early infection, but moderates inflammation after prolonged exposure to the organism through induction of tolerance

    An inflammatory checkpoint regulates recruitment of graft-versus-host reactive T cells to peripheral tissues

    Get PDF
    Transfer of T cells to freshly irradiated allogeneic recipients leads to their rapid recruitment to nonlymphoid tissues, where they induce graft-versus-host disease (GVHD). In contrast, when donor T cells are transferred to established mixed chimeras (MCs), GVHD is not induced despite a robust graft-versus-host (GVH) reaction that eliminates normal and malignant host hematopoietic cells. We demonstrate here that donor GVH-reactive T cells transferred to MCs or freshly irradiated mice undergo similar expansion and activation, with similar up-regulation of homing molecules required for entry to nonlymphoid tissues. Using dynamic two-photon in vivo microscopy, we show that these activated T cells do not enter GVHD target tissues in established MCs, contrary to the dogma that activated T cells inevitably traffic to nonlymphoid tissues. Instead, we show that the presence of inflammation within a nonlymphoid tissue is a prerequisite for the trafficking of activated T cells to that site. Our studies help to explain the paradox whereby GVH-reactive T cells can mediate graft-versus-leukemia responses without inducing GVHD in established MCs

    Genetic Mechanisms in Apc-Mediated Mammary Tumorigenesis

    Get PDF
    Many components of Wnt/β-catenin signaling pathway also play critical roles in mammary tumor development, yet the role of the tumor suppressor gene APC (adenomatous polyposis coli) in breast oncongenesis is unclear. To better understand the role of Apc in mammary tumorigenesis, we introduced conditional Apc mutations specifically into two different mammary epithelial populations using K14-cre and WAP-cre transgenic mice that express Cre-recombinase in mammary progenitor cells and lactating luminal cells, respectively. Only the K14-cre–mediated Apc heterozygosity developed mammary adenocarcinomas demonstrating histological heterogeneity, suggesting the multilineage progenitor cell origin of these tumors. These tumors harbored truncation mutation in a defined region in the remaining wild-type allele of Apc that would retain some down-regulating activity of β-catenin signaling. Activating mutations at codons 12 and 61 of either H-Ras or K-Ras were also found in a subset of these tumors. Expression profiles of acinar-type mammary tumors from K14-cre; ApcCKO/+ mice showed luminal epithelial gene expression pattern, and clustering analysis demonstrated more correlation to MMTV-neu model than to MMTV-Wnt1. In contrast, neither WAP-cre–induced Apc heterozygous nor homozygous mutations resulted in predisposition to mammary tumorigenesis, although WAP-cre–mediated Apc deficiency resulted in severe squamous metaplasia of mammary glands. Collectively, our results suggest that not only the epithelial origin but also a certain Apc mutations are selected to achieve a specific level of β-catenin signaling optimal for mammary tumor development and explain partially the colon- but not mammary-specific tumor development in patients that carry germline mutations in APC

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
    corecore