2,331 research outputs found

    Amplification of Angular Rotations Using Weak Measurements

    Get PDF
    We present a weak measurement protocol that permits a sensitive estimation of angular rotations based on the concept of weak-value amplification. The shift in the state of a pointer, in both angular position and the conjugate orbital angular momentum bases, is used to estimate angular rotations. This is done by an amplification of both the real and imaginary parts of the weak-value of a polarization operator that has been coupled to the pointer, which is a spatial mode, via a spin-orbit coupling. Our experiment demonstrates the first realization of weak-value amplification in the azimuthal degree of freedom. We have achieved effective amplification factors as large as 100, providing a sensitivity that is on par with more complicated methods that employ quantum states of light or extremely large values of orbital angular momentum.Comment: 5 pages, 3 figures, contains supplementary informatio

    Experimental generation of an optical field with arbitrary spatial coherence properties

    Get PDF
    We describe an experimental technique to generate a quasi-monochromatic field with any arbitrary spatial coherence properties that can be described by the cross-spectral density function, W(r1,r2)W(\mathbf{r_1,r_2}). This is done by using a dynamic binary amplitude grating generated by a digital micromirror device (DMD) to rapidly alternate between a set of coherent fields, creating an incoherent mix of modes that represent the coherent mode decomposition of the desired W(r1,r2)W(\mathbf{r_1,r_2}). This method was then demonstrated experimentally by interfering two plane waves and then spatially varying the coherent between these two modes such that the interference fringe visibility was shown to vary spatially between the two beams in an arbitrary and prescribed way.Comment: 6 pages, 5 figur

    Bacterial contamination of table eggs and the influence of housing systems

    Get PDF
    With the introduction of alternative housing systems for laying hens in the EU, recent research has focussed on the bacterial contamination of table eggs, e.g. eggshell and egg content contamination. Contamination of eggshells with aerobic bacteria is generally higher for nest eggs from non-cage systems compared to nest eggs from furnished cages or eggs from conventional cages. Studies indicate limited or no systematic differences in eggshell contamination with aerobic bacteria between eggs laid in the nest boxes of furnished cages and eggs laid in conventional cages. The major differences found in experimental studies between cage- and non-cage systems are less pronounced under commercial conditions. The effect of housing system on eggshell contamination with specific groups of bacteria is variable. Limited information is available on the influence of housing system on egg content contamination. Recent research does not indicate large differences in egg content contamination between eggs from cage- and non-cage systems (ignoring outside nest and floor eggs). The microflora of the eggshell is dominated by Gram-positive bacteria, whereas Gram-negative bacteria are best equipped to overcome the antimicrobial defences of the egg content. Much of the research on eggshell and egg content contamination focuses on Salmonella, since infection with Salmonella enteritidis, resulting from the consumption of contaminated eggs or egg products, is still a major health problem. Observed Salmonella prevalence on the eggshell and in the egg content vary, depending on the fact whether investigations were based on randomly sampled table eggs or on eggs from naturally infected hens. The limited information available on other pathogens shows that they are exclusively isolated from the eggshell and not from the internal contents

    Multiplexing Free-Space Channels using Twisted Light

    Get PDF
    We experimentally demonstrate an interferometric protocol for multiplexing optical states of light, with potential to become a standard element in free-space communication schemes that utilize light endowed with orbital angular momentum (OAM). We demonstrate multiplexing for odd and even OAM superpositions generated using different sources. In addition, our technique permits one to prepare either coherent superpositions or statistical mixtures of OAM states. We employ state tomography to study the performance of this protocol, and we demonstrate fidelities greater than 0.98.Comment: 4 pages, 3 figure

    Rapid Generation of Light Beams Carrying Orbital Angular Momentum

    Get PDF
    We report a technique for encoding both amplitude and phase variations onto a laser beam using a single digital micro-mirror device (DMD). Using this technique, we generate Laguerre-Gaussian and vortex orbital-angular-momentum (OAM) modes, along with modes in a set that is mutually unbiased with respect to the OAM basis. Additionally, we have demonstrated rapid switching among the generated modes at a speed of 4 kHz, which is much faster than the speed regularly achieved by spatial light modulators (SLMs). The dynamic control of both phase and amplitude of a laser beam is an enabling technology for classical communication and quantum key distribution (QKD) systems that employ spatial mode encoding

    Influence of Atmospheric Turbulence on Optical Communications using Orbital Angular Momentum for Encoding

    Get PDF
    We describe an experimental implementation of a free-space 11-dimensional communication system using orbital angular momentum (OAM) modes. This system has a maximum measured OAM channel capacity of 2.12 bits/photon. The effects of Kolmogorov thin-phase turbulence on the OAM channel capacity are quantified. We find that increasing the turbulence leads to a degradation of the channel capacity. We are able to mitigate the effects of turbulence by increasing the spacing between detected OAM modes. This study has implications for high-dimensional quantum key distribution (QKD) systems. We describe the sort of QKD system that could be built using our current technology.Comment: 6 pages, 5 figure

    Free-space communication through turbulence: a comparison of plane-wave and orbital-angular-momentum encodings

    Get PDF
    Free-space communication allows one to use spatial mode encoding, which is susceptible to the effects of diffraction and turbulence. Here, we discuss the optimum communication modes of a system while taking such effects into account. We construct a free-space communication system that encodes information onto the plane-wave (PW) modes of light. We study the performance of this system in the presence of atmospheric turbulence, and compare it with previous results for a system employing orbital-angular-momentum (OAM) encoding. We are able to show that the PW basis is the preferred basis set for communication through atmospheric turbulence for a large Fresnel number system. This study has important implications for high-dimensional quantum key distribution systems

    Optical ptychography with extended depth of field

    Get PDF
    Ptychography is an increasingly popular phase imaging technique. However, like any imaging technique it has a depth of field that limits the volume of a thick specimen that can be imaged in focus. Here, we have proposed to extend the depth of field using a multislice calculation model; an optical experiment successfully demonstrates our proposal

    Simulating thick atmospheric turbulence in the lab with application to orbital angular momentum communication

    Get PDF
    We describe a procedure by which a long (1km\gtrsim 1\,\mathrm{km}) optical path through atmospheric turbulence can be experimentally simulated in a controlled fashion and scaled down to distances easily accessible in a laboratory setting. This procedure is then used to simulate a 1-km-long free-space communication link in which information is encoded in orbital angular momentum (OAM) spatial modes. We also demonstrate that standard adaptive optics methods can be used to mitigate many of the effects of thick atmospheric turbulence.Comment: Rewritten abstract and introductory section to emphasize the importance of the work and to make it accessible to a more general audience. Section 2 was expanded to include some background on the physics of turbulence to allow the paper to be self-contained and understood by nonspecialist
    corecore