9 research outputs found

    Norcoclaurine Synthase-Mediated Stereoselective Synthesis of 1,1'-Disubstituted, Spiro- and Bis-Tetrahydroisoquinoline Alkaloids

    Get PDF
    The Pictet–Spenglerase norcoclaurine synthase (NCS) catalyzes the formation of (S)-norcoclaurine, an important intermediate in the biosynthetic pathway of benzylisoquinoline alkaloids. NCS has been used as a biocatalyst with meta-hydroxy phenethylamines and aldehydes for the preparation of single-isomer tetrahydroisoquinoline alkaloids (THIAs). Recently, it was also reported that some ketones can be accepted as substrates, including 4-substituted cyclohexanones and phenyl acetones. Here, we report the use of wild-type NCS and selected variants with aliphatic, cyclic, α-substituted cyclic, heterocyclic, and bicyclic ketones to access challenging non-natural THIAs. Remarkably, fused bicyclic ketones as well as diketones could also be accepted by some of the NCS variants, and in silico modeling was used to provide insights into the rationale for this

    Pictet-Spenglerases in Alkaloid Biosynthesis: future applications in Biocatalysis

    Get PDF
    Pictet-Spenglerases provide a key role in the biosynthesis of many biologically-active alkaloids. There is increasing use of these biocatalysts as an alternative to traditional organic synthetic methods as they provide stereoselective and regioselective control under mild conditions. Products from these enzymes also contain privileged drug scaffolds (such as tetrahydroisoquinoline or b-carboline moieties), so there is interest in the characterisation and use of these enzymes as versatile biocatalysts to synthesize analogues of the corresponding natural products for drug discovery. This review discusses all known Pictet- Spenglerase enzymes and their applications as biocatalysts. Rebecca , John M. , Nicholas H. and Helen C.

    Single step syntheses of (1S)-aryl-tetrahydroisoquinolines by norcoclaurine synthases

    Get PDF
    The 1-aryl-tetrahydroisoquinoline (1-aryl-THIQ) moiety is found in many biologically active molecules. Single enantiomer chemical syntheses are challenging and although some biocatalytic routes have been reported, the substrate scope is limited to certain structural motifs. The enzyme norcoclaurine synthase (NCS), involved in plant alkaloid biosynthesis, has been shown to perform stereoselective Pictet–Spengler reactions between dopamine and several carbonyl substrates. Here, benzaldehydes are explored as substrates and found to be accepted by both wild-type and mutant constructs of NCS. In particular, the variant M97V gives a range of (1 S)-aryl-THIQs in high yields (48–99%) and e.e.s (79–95%). A co-crystallised structure of the M97V variant with an active site reaction intermediate analogue is also obtained with the ligand in a pre-cyclisation conformation, consistent with (1 S)-THIQs formation. Selected THIQs are then used with catechol O-methyltransferases with exceptional regioselectivity. This work demonstrates valuable biocatalytic approaches to a range of (1 S)-THIQs

    Multienzyme One-Pot Cascades Incorporating Methyltransferases for the Strategic Diversification of Tetrahydroisoquinoline Alkaloids

    Get PDF
    The tetrahydroisoquinoline (THIQ) ring system is present in a large variety of structurally diverse natural products exhibiting a wide range of biological activities. Routes to mimic the biosynthetic pathways to such alkaloids, by building cascade reactions in vitro, represents a successful strategy and can offer better stereoselectivities than traditional synthetic methods. S-Adenosylmethionine (SAM)-dependent methyltransferases are crucial in the biosynthesis and diversification of THIQs; however, their application is often limited in vitro by the high cost of SAM and low substrate scope. In this study, we describe the use of methyltransferases in vitro in multi-enzyme cascades, including for the generation of SAM in situ. Up to seven enzymes were used for the regioselective diversification of natural and non-natural THIQs on an enzymatic preparative scale. Regioselectivites of the methyltransferases were dependent on the group at C-1 and presence of fluorine in the THIQs. An interesting dual activity was also discovered for the catechol methyltransferases used, which were found to be able to regioselectively methylate two different catechols in a single molecule

    The scaffold-forming steps of plant alkaloid biosynthesis

    Get PDF
    Alkaloids from plants are characterised by structural diversity and bioactivity, and maintain a privileged position in both modern and traditional medicines. In recent years, there have been significant advances in elucidating the biosynthetic origins of plant alkaloids. In this review, I will describe the progress made in determining the metabolic origins of the so-called true alkaloids, specialised metabolites derived from amino acids containing a nitrogen heterocycle. By identifying key biosynthetic steps that feature in the majority of pathways, I highlight the key roles played by modifications to primary metabolism, iminium reactivity and spontaneous reactions in the molecular and evolutionary origins of these pathways

    Chemoenzymatic cascades toward Methylated Tetrahydroprotoberberine and Protoberberine Alkaloids

    Get PDF
    Tetrahydroprotoberberine and protoberberine alkaloids are a group of biologically active natural products with complex molecular scaffolds. Isolation from plants is challenging and stereoselective synthetic routes, particularly of methylated compounds are limited, reducing the potential use of these compounds. In this work, we describe chemoenzymatic cascades toward various 13-methyl-tetrahydroprotoberberbine scaffolds using a stereoselective Pictet-Spenglerase, regioselective catechol O-methyltransferases and selective chemical Pictet-Spengler reactions. All reactions could be performed sequentially, without the workup or purification of any synthetic intermediates. Moreover, the naturally occurring alkaloids have the (+)-configuration and importantly here, a strategy to the (−)-isomers was developed. A methyl group at C-8 was also introduced with some stereocontrol, influenced by the stereochemistry at C-13. Furthermore, a single step reaction was found to convert tetrahydroprotoberberine alkaloids into the analogous protoberberine scaffold, avoiding the use of harsh oxidizing conditions or a selective oxidase. This work provides facile, selective routes toward novel analogues of bioactive alkaloids

    Acceptance and Kinetic Resolution of α-Methyl-Substituted Aldehydes by Norcoclaurine Synthases

    Get PDF
    Norcoclaurine synthase (NCS) catalyzes a stereoselective Pictet-Spengler reaction to give the key intermediate, (S)-norcoclaurine in benzylisoquinoline alkaloid (BIA) biosynthesis. This family of alkaloids contains many bioactive molecules including morphine and berberine. Recently, NCS has been demonstrated to accept a variety of aldehydes and some ketones as substrates, leading to a range of chiral tetrahydroisoquinoline (THIQ) products. Here, we report the unusual acceptance of α-substituted aldehydes, in particular α-methyl substituted aldehydes, by wild-type Thalictrum flavum NCS (33TfNCS) to give THIQ products. Moreover, the kinetic resolution of several α-substituted aldehydes to give THIQs with two defined chiral centers in a single step with high conversions was achieved. Several dopamine analogues were also accepted as substrates and reactions were amenable to scale-up. Active site mutants of TfNCS were then used which demonstrated the potential to enhance the stereoselectivities in the reaction and improve yields. Rationale for the acceptance of these substrates and improved activity with different mutants has been gained from a co-crystallized structure of 33TfNCS with a non-productive mimic of a reaction intermediate bound in the active site. Finally, molecular dynamics simulations were performed to study the binding of dopamine and an α-substituted aldehyde and provided further insight into the reaction with these substrates
    corecore