5,214 research outputs found
Green synthesis of vanillin: Pervaporation and dialysis for process intensification in a membrane reactor
In the present work, two different membrane processes (pervaporation and dialysis) are compared in view of their utilization in a membrane reactor, where vanillin, which is probably the most important aroma of the food industry, is synthesized in a green and sustainable way. The utilized precursor (ferulic acid, which is possibly a natural product from agricultural wastes) is partially oxidized (photocatalytically or biologically) and the product is continuously recovered from the reacting solution by the membrane process to avoid its degradation. It is observed that pervaporation is much more selective towards vanillin than dialysis, but the permeate flux of dialysis is much higher. Furthermore, dialysis can work also at lower temperatures and can be used to continuously restore the consumed substrate into the reacting mixture. A mathematical model of the integrated process (reaction combined with membrane separation) reproduces quite satisfactorily the experimental results and can be used for the analysis and the design of the process
Microfluidic cartridge with integrated array of amorphous silicon photosensors for chemiluminescence detection of viral DNA
Portable and simple analytical devices based on microfluidics with chemiluminescence detection are particularly attractive for point-of-care applications, offering high detectability and specificity in a simple and miniaturized analytical format. Particularly relevant for infectious disease diagnosis is the ability to sensitively and specifically detect target nucleic acid sequences in biological fluids. To reach the goal of real-life applications for such devices, however, several technological challenges related to full device integration are still to be solved, one key aspect regarding on-chip integration of the chemiluminescence signal detection device. Nowadays, the most promising approach is on-chip integration of thin-film photosensors. We recently proposed a portable cartridge with microwells aligned with an array of hydrogenated amorphous silicon (a-Si:H) photosensors, reaching attomole level limits of detection for different chemiluminescence model reactions. Herein, we explore its applicability and performance for multiplex and quantitative detection of viral DNA. In particular, the cartridge was modified to accommodate microfluidic channels and, upon immobilization of three oligonucleotide probes in different positions along each channel, each specific for a genotype of Parvovirus B19, viral nucleic acid sequences were captured and detected. With this system, taking advantage of oligoprobes specificity, chemiluminescence detectability, and photosensor sensitivity, accurate quantification of target analytes down to 70 pmol L-1 was obtained for each B19 DNA genotype, with high specificity and multiplexing ability. Results confirm the good detection capabilities and assay applicability of the proposed system, prompting the development of innovative portable analytical devices with enhanced sensitivity and multiplexed capabilities
Leaf pubescence mediates the abundance of non-prey food and the density of the predatory mite Typhlodromus pyri
Plants with leaves having numerous trichomes or domatia frequently harbor greater numbers of phytoseiid mites than do plant with leaves that lack these structures. We tested the hypothesis that this pattern occurs, in part, with Typhlodromus pyri because trichomes increase the capture of pollen or fungal spores that serve as alternative food. Using a common garden orchard, we found that apple varieties with trichome-rich leaves had 2-3 times more pollen and fungal spores compared to varieties with trichome-sparse leaves. We also studied the effects of leaf trichome density and pollen augmentation on T. pyri abundance to test the hypothesis that leaf trichomes mediate pollen and fungal spore capture and retention and thereby influence phytoseiid numbers. Cattail pollen (Typha sp.) was applied weekly to mature ‘McIntosh' and ‘Red Delicious' trees grown in an orchard and, in a separate experiment, to potted trees of the same varieties. ‘McIntosh' trees have leaves with many trichomes whereas leaves on the ‘Red Delicious' trees have roughly half as many trichomes. With both field-grown and potted trees, adding cattail pollen to ‘Red Delicious' trees increased T. pyri numbers compared to ‘Red Delicious' trees without pollen augmentation. In contrast, cattail pollen augmentation had no effect on T. pyri populations on ‘McIntosh' trees. Augmentation with cattail pollen most likely supplemented a lower supply of naturally available alternative food on ‘Red Delicous' leaves and thereby enhanced predator abundance. These studies indicate that larger populations of T. pyri on pubescent plants are due, in part, to the increased capture and retention of pollen and fungal spores that serve as alternative food
Calcite fibre formation in modern brachiopod shells
The fibrous calcite layer of modern brachiopod shells is a hybrid composite material and forms a
substantial part of the hard tissue. We investigated how cells of the outer mantle epithelium (OME)
secrete calcite material and generate the characteristic fibre morphology and composite microstructure
of the shell. We employed AFM, FE-SEM, and TEM imaging of embedded/etched, chemically fixed/
decalcified and high-pressure frozen/freeze substituted samples. Calcite fibres are secreted by outer
mantle epithelium (OME) cells. Biometric analysis of TEM micrographs indicates that about 50% of
these cells are attached via hemidesmosomes to an extracellular organic membrane present at the
proximal, convex surface of the fibres. At these sites, mineral secretion is not active. Instead, ion
transport from OME cells to developing fibres occurs at regions of closest contact between cells and
fibres, however only at sites where the extracellular membrane at the proximal fibre surface is not
developed yet. Fibre formation requires the cooperation of several adjacent OME cells. It is a spatially
and temporally changing process comprising of detachment of OME cells from the extracellular organic
membrane, mineral secretion at detachment sites, termination of secretion with formation of the
extracellular organic membrane, and attachment of cells via hemidesmosomes to this membrane.This is a BASE-LINE Earth project supported by the European Union’s Horizon 2020 research
and innovation program under grant agreement No. 643084. This is publication nr. 159 of Huinay Scientific Field
Station
Determination of propofol by GC/MS and fast GC/MS-TOF in two cases of poisoning
Two cases of suspected acute and lethal intoxication caused by propofol were delivered by the judicial authority to the Department of Sciences for Health Promotion and Mother-Child Care in Palermo, Sicily. In the first case a female nurse was found in a hotel room, where she lived with her mother; four 10 mg/mL vials and two 20 mg/mL vials of propofol were found near the decedent along with syringes and needles. In the second case a male nurse was found in the operating room of a hospital, along with a used syringe. In both cases a preliminary systematic and toxicological analysis indicated the presence of propofol in the blood and urine. As a result, a method for the quantitative determination of propofol in biological fluids was optimized and validated using a liquid-liquid extraction protocol followed by GC/MS and fast GC/MS-TOF. In the first case, the concentration of propofol in blood was determined to be 8.1 \u3bcg/mL while the concentration of propofol in the second case was calculated at 1.2 \u3bcg/mL. Additionally, the tissue distribution of propofol was determined for both cases. Brain and liver concentrations of propofol were, respectively, 31.1 and 52.2 \u3bcg/g in Case 1 and 4.7 and 49.1 \u3bcg/g in Case 2. Data emerging from the autopsy findings, histopathological exams as well as the toxicological results aided in establishing that the deaths were due to poisoning, however, the manner of death in each were different: homicide in Case 1 and suicide in Case 2
Exploring Proprotein Convertase Subtilisin/Kexin 9 (PCSK9) Autoproteolysis Process by Molecular Simulations: Hints for Drug Design
Proprotein convertase subtilisin/kexin 9 (PCSK9) is a notable target for the treatment of hypercholesterolemia because it regulates the population of the low-density lipoprotein receptor (LDLR) on liver cells. The PCSK9 zymogen is a serine protease that spontaneously undergoes a double self-cleavage step. The available X-ray structures depict the PCSK9 mature state, but the atomic details of the zymogen state of the enzyme are still unknown. Additionally, why the protease activity of PCSK9 is blocked after the second autoprocessing step remains unclear, as this deviates from other members of the PCSK family. By performing constant-pH molecular dynamics (MD) simulations, we investigated the protonation state of the catalytic triad of PCSK9 and found that it strongly influences the catalytic properties of the enzyme. Moreover, we determined the final step of the maturation process by classical and steered MD simulations. This study could facilitate the identification of ligands capable of interfering with the PCSK9 maturation process
Isolated anaemia as a manifestation of Rh isoimmunisation
Rh isoimmunisation leads to haemolytic anaemia and hyperbilirubinaemia in the first h of life. Isolated early onset neonatal anaemia has rarely been reported. The authors describe the case of a term infant, born to an 'A' negative, second gravida mother. On the second day of life, pallor was noticed. His haemoglobin (Hb) was 6.8 g/dl, he had reticulocytosis and a positive direct antiglobulin test. However, he did not have a high total serum bilirubin (TSB) (87.2 μmol/l). He was transfused with red blood cells and kept under phototherapy for 3 days. Three weeks later, he received another transfusion for severe anaemia (Hb 6 5 g/dl). During this period, he was never jaundiced and the maximum level of TSB was 122 μmol/l. On follow-up, his Hb stabilised and he had no further problems. This report highlights the possibility of early onset anaemia without jaundice as the sole manifestation of Rh isoimmunisation
Changes in the cerebellar cytoarchitecture of hibernating hedgehog Erinaceus europaeus L. (Mammalia): an immunocytochemical approach
Hibernation is an amazing animal strategy to survive when the environmental temperature is very low and food resources are scarce. Successful hibernation requires a variety of complex biological adaptations, in which the brain plays a central regulatory role. Currently, little information is available regarding the morphology and functional activity of specific neurons within the cerebellar cytoarchitecture of hibernating animals. In the present study, we investigated the immunohistochemical expression of essential proteins in the cerebellum of a mammalian hibernator (i.e. hedgehog Erinaceus europaeus L.), focusing on (i) Purkinje neurons, the sole output cells of the cerebellar cortex; (ii) selected neurotransmitters involved in hibernation processes; (iii) intracellular calcium homeostasis, considering that calcium is also an important regulator of neurotransmission mechanisms; and (iv) cytoskeletal proteins, involved in maintenance of neuronal shape and axon calibre. Specifically, we studied in situ immunocytochemical changes during the torpor state of hibernation (November–March) versus the activity phase (April–September). We employed different selected markers, i.e. glutamic acid decarboxylase (GAD67) and postsynaptic glutamate ionotropic receptor GluR2-3, different calcium-binding proteins (i.e. calbindin, parvalbumin and calretinin) and cytoskeletal components (i.e. pNF-H and MAP2). In summary, our data in hibernating animals demonstrated: (i) downregulation of GAD67, indicating loss/changes of synaptic contacts on Purkinje somata and dendrites; (ii) GluR2-3 upregulation in Purkinje neurons, with a drastic decrease of calbindin expression; and (iii) decrease of normal mechanisms regulating intracellular calcium homeostasis. We also found a decrease/modification in the distribution of cytoskeletal proteins, particularly evident for pNF-H. Changes in the functional activity of Purkinje cells were accompanied by some morphological dendrite alterations, signs of degeneration in cell somata and flattened basket pinceaux at the Purkinje axon hillock. These findings confirm that hibernation makes heterothermic animals a valuable model to study physiological adaptations to adverse conditions, and also for understanding cellular and molecular mechanisms aimed at preserving mammalian organs from full degeneration and death
Detection, signal processing, and calibration In lmmunoassay systems
The new trends in immunochemistry related to the replacement of
radioisotopic labels with non-radioactive labels are presented. Immunoenzymatic, fluorescent and chemiluminescent techniques are described in terms of their basic principles and their most common applications. The advantages of computer-controlled calibration are also discussed
- …