216 research outputs found

    Benthonic Foraminifera from Lahave Estuary

    Get PDF
    The five most numerous species of benthonic foraminifera sampled from the LaHave River estuary in Nova Scotia were used to define two major faunal assemblage zones. These are the upper estuarine and transitional zones of a "transitional" type of estuary as defined by Scott et al (1977). The transitional zone is subdivided into upper and lower subzones. Foraminiferal distribution in the study area appears to be determined by sediment patterns as water temperatures and salinity show little variation

    Genome-Wide Maps of Circulating miRNA Biomarkers for Ulcerative Colitis

    Get PDF
    Inflammatory Bowel Disease – comprised of Crohn's Disease and Ulcerative Colitis (UC) - is a complex, multi-factorial inflammatory disorder of the gastrointestinal tract. In this study we have explored the utility of naturally occurring circulating miRNAs as potential blood-based biomarkers for non-invasive prediction of UC incidences. Whole genome maps of circulating miRNAs in micro-vesicles, Peripheral Blood Mononuclear Cells and platelets have been constructed from a cohort of 20 UC patients and 20 normal individuals. Through Significance Analysis of Microarrays, a signature of 31 differentially expressed platelet-derived miRNAs has been identified and biomarker performance estimated through a non-probabilistic binary linear classification using Support Vector Machines. Through this approach, classifier measurements reveal a predictive score of 92.8% accuracy, 96.2% specificity and 89.5% sensitivity in distinguishing UC patients from normal individuals. Additionally, the platelet-derived biomarker signature can be validated at 88% accuracy through qPCR assays, and a majority of the miRNAs in this panel can be demonstrated to sub-stratify into 4 highly correlated intensity based clusters. Analysis of predicted targets of these biomarkers reveal an enrichment of pathways associated with cytoskeleton assembly, transport, membrane permeability and regulation of transcription factors engaged in a variety of regulatory cascades that are consistent with a cell-mediated immune response model of intestinal inflammation. Interestingly, comparison of the miRNA biomarker panel and genetic loci implicated in IBD through genome-wide association studies identifies a physical linkage between hsa-miR-941 and a UC susceptibility loci located on Chr 20. Taken together, analysis of these expression maps outlines a promising catalog of novel platelet-derived miRNA biomarkers of clinical utility and provides insight into the potential biological function of these candidates in disease pathogenesis

    A Phase I/II trial of Oral SRA737 (a Chk1 Inhibitor) given in combination with low-dose gemcitabine in patients with advanced cancer

    Get PDF
    Purpose: This was a phase I/II trial of the novel checkpoint kinase 1 (Chk1) inhibitor SRA737 given in combination with gemcitabine. Its objectives were to establish the safety profile, recommended phase 2 dose (RP2D), pharmacokinetics profile, and clinical activity of SRA737. Patients and Methods: Patients with advanced solid tumors were enrolled into dose-escalation cohorts and treated in 28-day cycles with oral SRA737 on days 2, 3, 9, 10, 16 and 17, and intravenous gemcitabine on days 1, 8 and 15. Treatment was continued until progression. Each expansion cohort included up to 20 patients with specific genetically defined tumors. Results: The RP2D was determined to be 500 mg SRA737 combined with low-dose (250 mg/m2) gemcitabine. Of 143 enrolled patients, 77 were treated at doses of at least 500 mg SRA737 combined with 250 mg/m2 gemcitabine. Common toxicities of nausea, vomiting, fatigue and diarrhea were primarily mild to moderate, and rarely led to treatment discontinuation. Anemia, neutropenia and thrombocytopenia were grade ≄3 in 8.3% to 11.7% of patients treated at the RP2D. The objective response rate (ORR) was 10.8% overall and notably the ORR in anogenital cancer was 25%. Partial tumor responses were observed in anogenital cancer, cervical cancer, high-grade serous ovarian cancer, rectal cancer, and small cell lung cancer. Conclusions: SRA737 in combination with low-dose gemcitabine was well tolerated with lower myelotoxicity than has been seen at standard doses of gemcitabine or with other combinations of Chk1 inhibitors with gemcitabine. Tumor responses were observed in anogenital and other solid tumors

    Influence of Cytokines on HIV-Specific Antibody-Dependent Cellular Cytotoxicity Activation Profile of Natural Killer Cells

    Get PDF
    There is growing interest in HIV-specific antibody-dependent cellular cytotoxicity (ADCC) as an effective immune response to prevent or control HIV infection. ADCC relies on innate immune effector cells, particularly NK cells, to mediate control of virus-infected cells. The activation of NK cells (i.e., expression of cytokines and/or degranulation) by ADCC antibodies in serum is likely subject to the influence of other factors that are also present. We observed that the HIV-specific ADCC antibodies, within serum samples from a panel of HIV-infected individuals induced divergent activation profiles of NK cells from the same donor. Some serum samples primarily induced NK cell cytokine expression (i.e., IFNγ), some primarily initiated NK cell expression of a degranulation marker (CD107a) and others initiated a similar magnitude of responses across both effector functions. We therefore evaluated a number of HIV-relevant soluble factors for their influence on the activation of NK cells by HIV-specific ADCC antibodies. Key findings were that the cytokines IL-15 and IL-10 consistently enhanced the ability of NK cells to respond to HIV-specific ADCC antibodies. Furthermore, IL-15 was demonstrated to potently activate “educated” KIR3DL1+ NK cells from individuals carrying its HLA-Bw4 ligand. The cytokine was also demonstrated to activate “uneducated” KIR3DL1+ NK cells from HLA-Bw6 homozygotes, but to a lesser extent. Our results show that cytokines influence the ability of NK cells to respond to ADCC antibodies in vitro. Manipulating the immunological environment to enhance the potency of NK cell-mediated HIV-specific ADCC effector functions could be a promising immunotherapy or vaccine strategy

    The ATLAS Data Acquisition and High-Level Trigger: Concept, Design and Status

    Get PDF
    The Trigger and Data Acquisition system (TDAQ) of the ATLAS experiment at the CERN Large Hadron Collider is based on a multi-level selection process and a hierarchical acquisition tree. The system, consisting of a combination of custom electronics and commercial products from the computing and telecommunication industry, is required to provide an online selection power of 105 and a total throughput in the range of Terabit/sec. This paper introduces the basic system requirements and concepts, describes the architecture of the system, discusses the basic measurements supporting the validity of the design and reports on the actual status of construction and installation

    The ATLAS trigger - high-level trigger commissioning and operation during early data taking

    Get PDF
    The ATLAS experiment is one of the two general-purpose experiments due to start operation soon at the Large Hadron Collider (LHC). The LHC will collide protons at a centre of mass energy of 14~TeV, with a bunch-crossing rate of 40~MHz. The ATLAS three-level trigger will reduce this input rate to match the foreseen offline storage capability of 100-200~Hz. This paper gives an overview of the ATLAS High Level Trigger focusing on the system design and its innovative features. We then present the ATLAS trigger strategy for the initial phase of LHC exploitation. Finally, we report on the valuable experience acquired through in-situ commissioning of the system where simulated events were used to exercise the trigger chain. In particular we show critical quantities such as event processing times, measured in a large-scale HLT farm using a complex trigger menu

    Recent highlights from GENIE v3

    Get PDF
    Funder: u.s. department of energy; doi: http://dx.doi.org/10.13039/100000015AbstractThe release of GENIE v3.0.0 was a major milestone in the long history of the GENIE project, delivering several alternative comprehensive neutrino interaction models, improved charged-lepton scattering simulations, a range of beyond the Standard Model simulation capabilities, improved experimental interfaces, expanded core framework capabilities, and advanced new frameworks for the global analysis of neutrino scattering data and tuning of neutrino interaction models. Steady progress continued following the release of GENIE v3.0.0. New tools and a large number of new physics models, comprehensive model configurations, and tunes have been made publicly available and planned for release in v3.2.0. This article highlights some of the most recent technical and physics developments in the GENIE v3 series.</jats:p

    Low exposure long-baseline neutrino oscillation sensitivity of the DUNE experiment

    Full text link
    The Deep Underground Neutrino Experiment (DUNE) will produce world-leading neutrino oscillation measurements over the lifetime of the experiment. In this work, we explore DUNE's sensitivity to observe charge-parity violation (CPV) in the neutrino sector, and to resolve the mass ordering, for exposures of up to 100 kiloton-megawatt-years (kt-MW-yr). The analysis includes detailed uncertainties on the flux prediction, the neutrino interaction model, and detector effects. We demonstrate that DUNE will be able to unambiguously resolve the neutrino mass ordering at a 3σ\sigma (5σ\sigma) level, with a 66 (100) kt-MW-yr far detector exposure, and has the ability to make strong statements at significantly shorter exposures depending on the true value of other oscillation parameters. We also show that DUNE has the potential to make a robust measurement of CPV at a 3σ\sigma level with a 100 kt-MW-yr exposure for the maximally CP-violating values \delta_{\rm CP}} = \pm\pi/2. Additionally, the dependence of DUNE's sensitivity on the exposure taken in neutrino-enhanced and antineutrino-enhanced running is discussed. An equal fraction of exposure taken in each beam mode is found to be close to optimal when considered over the entire space of interest

    Snowmass Neutrino Frontier: DUNE Physics Summary

    Get PDF
    The Deep Underground Neutrino Experiment (DUNE) is a next-generation long-baseline neutrino oscillation experiment with a primary physics goal of observing neutrino and antineutrino oscillation patterns to precisely measure the parameters governing long-baseline neutrino oscillation in a single experiment, and to test the three-flavor paradigm. DUNE's design has been developed by a large, international collaboration of scientists and engineers to have unique capability to measure neutrino oscillation as a function of energy in a broadband beam, to resolve degeneracy among oscillation parameters, and to control systematic uncertainty using the exquisite imaging capability of massive LArTPC far detector modules and an argon-based near detector. DUNE's neutrino oscillation measurements will unambiguously resolve the neutrino mass ordering and provide the sensitivity to discover CP violation in neutrinos for a wide range of possible values of ÎŽCP. DUNE is also uniquely sensitive to electron neutrinos from a galactic supernova burst, and to a broad range of physics beyond the Standard Model (BSM), including nucleon decays. DUNE is anticipated to begin collecting physics data with Phase I, an initial experiment configuration consisting of two far detector modules and a minimal suite of near detector components, with a 1.2 MW proton beam. To realize its extensive, world-leading physics potential requires the full scope of DUNE be completed in Phase II. The three Phase II upgrades are all necessary to achieve DUNE's physics goals: (1) addition of far detector modules three and four for a total FD fiducial mass of at least 40 kt, (2) upgrade of the proton beam power from 1.2 MW to 2.4 MW, and (3) replacement of the near detector's temporary muon spectrometer with a magnetized, high-pressure gaseous argon TPC and calorimeter

    A Gaseous Argon-Based Near Detector to Enhance the Physics Capabilities of DUNE

    Get PDF
    This document presents the concept and physics case for a magnetized gaseous argon-based detector system (ND-GAr) for the Deep Underground Neutrino Experiment (DUNE) Near Detector. This detector system is required in order for DUNE to reach its full physics potential in the measurement of CP violation and in delivering precision measurements of oscillation parameters. In addition to its critical role in the long-baseline oscillation program, ND-GAr will extend the overall physics program of DUNE. The LBNF high-intensity proton beam will provide a large flux of neutrinos that is sampled by ND-GAr, enabling DUNE to discover new particles and search for new interactions and symmetries beyond those predicted in the Standard Model
    • 

    corecore