29 research outputs found

    Vip3A Resistance Alleles Exist at High Levels in Australian Targets before Release of Cotton Expressing This Toxin

    Get PDF
    Crops engineered to produce insecticidal crystal (Cry) proteins from the soil bacterium Bacillus thuringiensis (Bt) have revolutionised pest control in agriculture. However field-level resistance to Bt has developed in some targets. Utilising novel vegetative insecticidal proteins (Vips), also derived from Bt but genetically distinct from Cry toxins, is a possible solution that biotechnical companies intend to employ. Using data collected over two seasons we determined that, before deployment of Vip-expressing plants in Australia, resistance alleles exist in key targets as polymorphisms at frequencies of 0.027 (n = 273 lines, 95% CI = 0.019–0.038) in H. armigera and 0.008 (n = 248 lines, 0.004–0.015) in H. punctigera. These frequencies are above mutation rates normally encountered. Homozygous resistant neonates survived doses of Vip3A higher than those estimated in field-grown plants. Fortunately the resistance is largely, if not completely, recessive and does not confer resistance to the Bt toxins Cry1Ac or Cry2Ab already deployed in cotton crops. These later characteristics are favourable for resistance management; however the robustness of Vip3A inclusive varieties will depend on resistance frequencies to the Cry toxins when it is released (anticipated 2016) and the efficacy of Vip3A throughout the season. It is appropriate to pre-emptively screen key targets of Bt crops elsewhere, especially those such as H. zea in the USA, which is not only closely related to H. armigera but also will be exposed to Vip in several varieties of cotton and corn

    Incipient Resistance of Helicoverpa punctigera to the Cry2Ab Bt Toxin in Bollgard II® Cotton

    Get PDF
    Combinations of dissimilar insecticidal proteins (“pyramids”) within transgenic plants are predicted to delay the evolution of pest resistance for significantly longer than crops expressing a single transgene. Field-evolved resistance to Bacillus thuringiensis (Bt) transgenic crops has been reported for first generation, single-toxin varieties and the Cry1 class of proteins. Our five year data set shows a significant exponential increase in the frequency of alleles conferring Cry2Ab resistance in Australian field populations of Helicoverpa punctigera since the adoption of a second generation, two-toxin Bt cotton expressing this insecticidal protein. Furthermore, the frequency of cry2Ab resistance alleles in populations from cropping areas is 8-fold higher than that found for populations from non-cropping regions. This report of field evolved resistance to a protein in a dual-toxin Bt-crop has precisely fulfilled the intended function of monitoring for resistance; namely, to provide an early warning of increases in frequencies that may lead to potential failures of the transgenic technology. Furthermore, it demonstrates that pyramids are not ‘bullet proof’ and that rapid evolution to Bt toxins in the Cry2 class is possible

    Binding Site Alteration Is Responsible for Field-Isolated Resistance to Bacillus thuringiensis Cry2A Insecticidal Proteins in Two Helicoverpa Species

    Get PDF
    Background Evolution of resistance by target pests is the main threat to the long-term efficacy of crops expressing Bacillus thuringiensis (Bt) insecticidal proteins. Cry2 proteins play a pivotal role in current Bt spray formulations and transgenic crops and they complement Cry1A proteins because of their different mode of action. Their presence is critical in the control of those lepidopteran species, such as Helicoverpa spp., which are not highly susceptible to Cry1A proteins. In Australia, a transgenic variety of cotton expressing Cry1Ac and Cry2Ab (Bollgard II) comprises at least 80% of the total cotton area. Prior to the widespread adoption of Bollgard II, the frequency of alleles conferring resistance to Cry2Ab in field populations of Helicoverpa armigera and Helicoverpa punctigera was significantly higher than anticipated. Colonies established from survivors of F2 screens against Cry2Ab are highly resistant to this toxin, but susceptible to Cry1Ac. Methodology/Principal Findings Bioassays performed with surface-treated artificial diet on neonates of H. armigera and H. punctigera showed that Cry2Ab resistant insects were cross-resistant to Cry2Ae while susceptible to Cry1Ab. Binding analyses with 125I-labeled Cry2Ab were performed with brush border membrane vesicles from midguts of Cry2Ab susceptible and resistant insects. The results of the binding analyses correlated with bioassay data and demonstrated that resistant insects exhibited greatly reduced binding of Cry2Ab toxin to midgut receptors, whereas no change in 125I-labeled-Cry1Ac binding was detected. As previously demonstrated for H. armigera, Cry2Ab binding sites in H. punctigera were shown to be shared by Cry2Ae, which explains why an alteration of the shared binding site would lead to cross-resistance between the two Cry2A toxins. Conclusion/Significance This is the first time that a mechanism of resistance to the Cry2 class of insecticidal proteins has been reported. Because we found the same mechanism of resistance in multiple strains representing several field populations, we conclude that target site alteration is the most likely means that field populations evolve resistance to Cry2 proteins in Helicoverpa spp. Our work also confirms the presence in the insect midgut of specific binding sites for this class of proteins. Characterizing the Cry2 receptors and their mutations that enable resistance could lead to the development of molecular tools to monitor resistance in the [email protected]; [email protected]

    How managed a market? Modes of commissioning in England and Germany

    Get PDF
    Background: In quasi-markets governance over healthcare providers is mediated by commissioners. Different commissioners apply different combinations of six methods of control (’media of power’) for exercising governance: managerial performance, negotiation, discursive control, incentives, competition and juridical control. This paper compares how English and German healthcare commissioners do so. Methods: Systematic comparison of observational national-level case studies in terms of six media of power, using data from multiple sources. Results: The comparison exposes and contrasts two basic generic modes of commissioning: 1. Surrogate planning (English NHS), in which a negotiated order involving micro-commissioning, provider competition, financial incentives and penalties are the dominant media of commissioner power over providers. 2. Case-mix commissioning (Germany), in which managerial performance, an ‘episode based’ negotiated order and juridical controls appear the dominant media of commissioner power. Conclusions: Governments do not necessarily maximise commissioners’ power over providers by implementing as many media of power as possible because these media interact, some complementing and others inhibiting each other. In particular, patient choice of provider inhibits commissioners’ use of provider competition as a means of control

    Abstracts from the NIHR INVOLVE Conference 2017

    Get PDF
    n/

    Frequencies of <i>cry2Ab</i> resistance alleles in <i>H. punctigera</i> from cropping populations.

    No full text
    <p>The values in parentheses below the years show the number of resistance alleles/the number of alleles tested. The data were collected using F<sub>2</sub> screens.</p

    Dose responses of <i>H. armigera</i> genotypes and backcrosses to the resistant colony.

    No full text
    <p>Solid squares show data for the homozygous susceptible colony (GR), open squares show data for the heterozygotes, open triangles show data for the offspring from mating between heterozygous females and resistant males, closed triangles show data for the offspring from mating between heterozygous males and resistant females, and the crosses show data for the homozygous resistant colony (SP85).</p

    Susceptibility of various strains of <i>H. armigera</i> and <i>H. punctigera</i> to Vip3A, Cry2Ab and Cry1Ac.

    No full text
    *<p>LC<sub>50</sub> and slope could not be calculated as there was no increase in mortality at the maximum titre tested (128 ug/cm<sup>2</sup>).</p

    Dose responses of <i>H. punctigera</i> genotypes and backcrosses to the resistant colony.

    No full text
    <p>Solid squares show data for the homozygous susceptible colony (LHP), open squares show data for the heterozygotes, open triangles show data for the offspring from mating between heterozygous females and resistant males, closed triangles show data for the offspring from mating between heterozygous males and resistant females, and the crosses show data for the homozygous resistant colony (Hp8–48).</p
    corecore