10 research outputs found

    Stem-like intestinal Th17 cells give rise to pathogenic effector T cells during autoimmunity

    No full text
    While intestinal Th17 cells are critical for maintaining tissue homeostasis, recent studies have implicated their roles in the development of extra-intestinal autoimmune diseases including multiple sclerosis. However, the mechanisms by which tissue Th17 cells mediate these dichotomous functions remain unknown. Here, we characterized the heterogeneity, plasticity, and migratory phenotypes of tissue Th17 cells in vivo by combined fate mapping with profiling of the transcriptomes and TCR clonotypes of over 84,000 Th17 cells at homeostasis and during CNS autoimmune inflammation. Inter- and intra-organ single-cell analyses revealed a homeostatic, stem-like TCF1+ IL-17+ SLAMF6+ population that traffics to the intestine where it is maintained by the microbiota, providing a ready reservoir for the IL-23-driven generation of encephalitogenic GM-CSF+ IFN-γ+ CXCR6+ T cells. Our study defines a direct in vivo relationship between IL-17+ non-pathogenic and GM-CSF+ and IFN-γ+ pathogenic Th17 populations and provides a mechanism by which homeostatic intestinal Th17 cells direct extra-intestinal autoimmune disease

    MyD88 inhibition amplifies dendritic cell capacity to promote pancreatic carcinogenesis via Th2 cells

    No full text
    The greatest risk factor for the development of pancreatic cancer is chronic pancreatitis. As such, the transition of chronic pancreatic fibro-inflammatory disease to neoplasia represents a quintessential clinical example in the paradigm of inflammation leading to cancer. However, the cellular and molecular links bridging these entities are not well understood. Since dendritic cells (DC) have recently emerged as initiators of inflammation, we postulated that DC are central in this pancreas-specific process. We found that DC exacerbate pancreatic fibro-inflammation, organ destruction, and accelerate carcinogenesis, even in the absence of an endogenous mutation, by inducing pancreatic antigen-restricted Th2 cells. Furthermore, blockade of MyD88, an adaptor protein central to inflammation and carcinogenesis in other contexts, paradoxically accelerates inflammation and transformation in the pancreas by augmenting the DC-Th2 axis. Our findings are the first to suggest novel pathways that implicate DC and the inhibition of MyD88 in pancreatic inflammation and neoplastic transformation

    Sanmarco et al., 2023.pdf

    No full text
    Dendritic cells (DCs) control the generation of self-reactive pathogenic T cells. Thus, DCs are considered attractive therapeutic targets for autoimmune diseases. Using single-cell and bulk transcriptional and metabolic analyses in combination with cell-specific gene perturbation studies we identified a negative feedback regulatory pathway that operates in DCs to limit immunopathology. Specifically, we found that lactate, produced by activated DCs and other immune cells, boosts NDUFA4L2 expression through a mechanism mediated by HIF-1a. NDUFA4L2 limits the production of mitochondrial reactive oxygen species that activate XBP1-driven transcriptional modules in DCs involved in the control of pathogenic autoimmune T cells. Moreover, we engineered a probiotic that produces lactate and suppresses T-cell autoimmunity in the central nervous system via the activation of HIF-1a/NDUFA4L2 signaling in DCs. In summary, we identified an immunometabolic pathway that regulates DC function, and developed a synthetic probiotic for its therapeutic activation. </p

    Evaluation of serological lateral flow assays for severe acute respiratory syndrome coronavirus-2

    No full text
    Abstract Background COVID-19 has resulted in significant morbidity and mortality worldwide. Lateral flow assays can detect anti-Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) antibodies to monitor transmission. However, standardized evaluation of their accuracy and tools to aid in interpreting results are needed. Methods We evaluated 20 IgG and IgM assays selected from available tests in April 2020. We evaluated the assays’ performance using 56 pre-pandemic negative and 56 SARS-CoV-2-positive plasma samples, collected 10–40 days after symptom onset, confirmed by a molecular test and analyzed by an ultra-sensitive immunoassay. Finally, we developed a user-friendly web app to extrapolate the positive predictive values based on their accuracy and local prevalence. Results Combined IgG + IgM sensitivities ranged from 33.9 to 94.6%, while combined specificities ranged from 92.6 to 100%. The highest sensitivities were detected in Lumiquick for IgG (98.2%), BioHit for both IgM (96.4%), and combined IgG + IgM sensitivity (94.6%). Furthermore, 11 LFAs and 8 LFAs showed perfect specificity for IgG and IgM, respectively, with 15 LFAs showing perfect combined IgG + IgM specificity. Lumiquick had the lowest estimated limit-of-detection (LOD) (0.1 μg/mL), followed by a similar LOD of 1.5 μg/mL for CareHealth, Cellex, KHB, and Vivachek. Conclusion We provide a public resource of the accuracy of select lateral flow assays with potential for home testing. The cost-effectiveness, scalable manufacturing process, and suitability for self-testing makes LFAs an attractive option for monitoring disease prevalence and assessing vaccine responsiveness. Our web tool provides an easy-to-use interface to demonstrate the impact of prevalence and test accuracy on the positive predictive values
    corecore