38 research outputs found

    Avoiding Pitfalls in Comparison of Activity and Selectivity of Solid Catalysts for Electrochemical HMF Oxidation

    Get PDF
    Electrocatalytic oxidation of 5-hydroxymethylfurfural (HMF) offers a renewable approach to produce the value-added platform chemical 2,5-furandicarboxylic acid (FDCA). The key for the economic viability of this approach is to develop active and selective electrocatalysts. Nevertheless, a reliable catalyst evaluation protocol is still missing, leading to elusive conclusions on criteria for a high-performing catalyst. Herein, we demonstrate that besides the catalyst identity, secondary parameters such as materials of conductive substrates for the working electrode, concentration of the supporting electrolyte, and electrolyzer configurations have profound impact on the catalyst performance and thus need to be optimized before assessing the true activity of a catalyst. Moreover, we highlight the importance of those secondary parameters in suppressing side reactions, which has long been overlooked. The protocol is validated by evaluating the performance of free-standing Cu-foam, and CuCoO modified with NaPO2H2 and Ni, which were immobilized on boron-doped diamond (BDD) electrodes. Recommended practices and figure of merits in carefully evaluating the catalyst performance are proposed. © 2021 The Authors. Published by The Chemical Society of Japan & Wiley-VCH Gmb

    Avoiding Pitfalls in Comparison of Activity and Selectivity of Solid Catalysts for Electrochemical HMF Oxidation

    Get PDF
    Electrocatalytic oxidation of 5‐hydroxymethylfurfural (HMF) offers a renewable approach to produce the value‐added platform chemical 2,5‐furandicarboxylic acid (FDCA). The key for the economic viability of this approach is to develop active and selective electrocatalysts. Nevertheless, a reliable catalyst evaluation protocol is still missing, leading to elusive conclusions on criteria for a high‐performing catalyst. Herein, we demonstrate that besides the catalyst identity, secondary parameters such as materials of conductive substrates for the working electrode, concentration of the supporting electrolyte, and electrolyzer configurations have profound impact on the catalyst performance and thus need to be optimized before assessing the true activity of a catalyst. Moreover, we highlight the importance of those secondary parameters in suppressing side reactions, which has long been overlooked. The protocol is validated by evaluating the performance of free‐standing Cu‐foam, and CuCoO modified with NaPO₂H₂ and Ni, which were immobilized on boron‐doped diamond (BDD) electrodes. Recommended practices and figure of merits in carefully evaluating the catalyst performance are proposed

    Cu‐Oxide Nanoparticles Catalyzed Synthesis of Nitriles and Amides from Alcohols and Ammonia in Presence of Air

    Get PDF
    The synthesis and functionalization of nitrogen-containing compounds continue to be important due to their wide applications. In particular, the preparation of nitriles and amides applying cost-effective and green methodologies is of central importance because these products represent valuable fine and bulk chemicals and serve as key precursors and central intermediates in organic synthesis and drug discovery as well as materials. Here, the preparation of nitriles and primary amides from alcohols and ammonia by a heterogeneous Cu-catalyzed aerobic oxidation process is reported. The optimal catalyst for this synthesis is based on supported copper oxide-nanoparticles, which are prepared by the impregnation and pyrolysis of simple copper nitrate on carbon. Applying these reusable nanoparticles, various simple, substituted, and functionalized aromatic, heterocyclic, and aliphatic nitriles are synthesized starting from inexpensive and easily accessible alcohols and ammonia in the presence of air. In addition, the synthesis of selected primary amides in a water medium is also performed using these Cu nanoparticles. © 2022 The Authors. Advanced Sustainable Systems published by Wiley-VCH GmbH
    corecore