44 research outputs found

    A Spatio-Temporal Analysis of Dengue Fever Transmission in Yogyakarta City, Indonesia

    Full text link
    BACKGROUND: Dengue fever remains a major health problem in tropical countries. Some measures had been implemented by the government to control this disease. Apparently, however, these measures were not effective. Therefore, there is a need for a study that provides information to aid the control program. This study aimed at investigating the space-time clustering of dengue fever transmission in Yogyakarta. SUBJECT AND METHODS: This was a retrospective cohort study using surveillance data on dengue fever cases in all subdistricts, Yogyakarta, Indonesia, from January to July 2014. This secondary data was obtained from the Municipality Health Office, Yogyakarta City. The space-time clustering of dengue fever case transmission was analyzed using SaTScan permutation model. RESULT: Dengue fever case transmission was clustered temporarily in several spots during the study period. The clustering of dengue fever transmission differed significantly among sub-districts with Mergangsan sub-district showing the highest cluster (p=0.005). CONCLUSION: There is a significant difference in dengue fever transmission clustering among sub-districts in Yogyakarta City with the highest cluster occurring in Mergangsan sub-district. This finding can be used to guide future study into intervention priority of dengue fever control in Yogyakarta City. Keywords: dengue fever, cluster, space-time analysis, urban, SaTSca

    Projecting the risk of mosquito-borne diseases in a warmer and more populated world: a multi-model, multi-scenario intercomparison modelling study

    Get PDF
    Background: Mosquito-borne diseases are expanding their range, and re-emerging in areas where they had subsided for decades. The extent to which climate change influences the transmission suitability and population at risk of mosquito-borne diseases across different altitudes and population densities has not been investigated. The aim of this study was to quantify the extent to which climate change will influence the length of the transmission season and estimate the population at risk of mosquito-borne diseases in the future, given different population densities across an altitudinal gradient. Methods: Using a multi-model multi-scenario framework, we estimated changes in the length of the transmission season and global population at risk of malaria and dengue for different altitudes and population densities for the period 1951-99. We generated projections from six mosquito-borne disease models, driven by four global circulation models, using four representative concentration pathways, and three shared socioeconomic pathways. Findings: We show that malaria suitability will increase by 1·6 additional months (mean 0·5, SE 0·03) in tropical highlands in the African region, the Eastern Mediterranean region, and the region of the Americas. Dengue suitability will increase in lowlands in the Western Pacific region and the Eastern Mediterranean region by 4·0 additional months (mean 1·7, SE 0·2). Increases in the climatic suitability of both diseases will be greater in rural areas than in urban areas. The epidemic belt for both diseases will expand towards temperate areas. The population at risk of both diseases might increase by up to 4·7 additional billion people by 2070 relative to 1970-99, particularly in lowlands and urban areas. Interpretation: Rising global mean temperature will increase the climatic suitability of both diseases particularly in already endemic areas. The predicted expansion towards higher altitudes and temperate regions suggests that outbreaks can occur in areas where people might be immunologically naive and public health systems unprepared. The population at risk of malaria and dengue will be higher in densely populated urban areas in the WHO African region, South-East Asia region, and the region of the Americas, although we did not account for urban-heat island effects, which can further alter the risk of disease transmission

    Validating Search Protocols for Mining of Health and Disease Events on Twitter

    Full text link
    BACKGROUND: Twitter is a free social networking and micro-blogging service that enables its users to read and share information with user and media communities in messages no longer than 140-character. In the year of 2016, there were more than 24 million Indonesian twitter users sharing news, events, as well as personal feelings and experiences on Twitter. This study seeks to validate a search protocol of health related terms using real-time Twitter data which can later be used to understand if, and how, twitter can reveal information on the current health situation in Indonesia. In this validation study of mining protocols, we: 1) extracted geo-located conversations related to health and disease postings on Twitter using a set of pre-defined keywords, 2) assessed the prevalence, frequency and timing of such content in these conversations, and 3) validated how this search protocol was able to detect relevant disease tweets. SUBJECT AND METHODS: Groups of words and phrases relevant to disease symptoms and health outcomes were used in a protocol developed in the Indonesian language in order to extract relevant content from geo-tagged Twitter feeds. A supervised learning algorithm using Classification and Regression Tree´s (CART) was used to validate search protocols of disease and health hits comparing to those identified by a team of human experts. The experts categorized tweets as positive or negative in respect to health events. The model fit was evaluated based on prediction perfor-mance. RESULTS: 390 tweets from historical Twitter feeds and 1,145,649 tweets from Twitter stream feeds during the period July 26th to August 1st, 2016. Only twitter hits with health related keywords in the Indonesian language were obtained. The accuracy of predictions of mined hits versus expert validated hits using the CART algorithm showed good validity with AUC beyond 0.8. CONCLUSION: Monitoring of public sentiment on Twitter, combined with contextual knowledge about the disease, can detect health and disease tweets and potentially be used as a valuable real-time proxy for health events over space and time. Keywords: social networking, disease detection, disease early warning, digital epidemiology, big data analysi

    Climate Services For Infectious Disease Control: A Nexus Between Public Health Preparedness And Sustainable Development, Lessons Learned From Long-Term Multi-Site Time-Series Analysis Of Dengue Fever In Vietnam

    Full text link
    BACKGROUND: Climate services provide valuable information for making actionable, data-driven decisions to protect public health in a myriad of manners. There is mounting global evidence of the looming threat climate change poses to human health, including the variability and intensity of infectious disease outbreaks in Vietnam and other low-resource and developing areas. In light of the Sustainable Development Goals, this study aimed to examine the utility of spatial and time-series analysis, to inform public health preparedness strategies for sustainable urban development, in terms of dengue epidemiology, surveillance, control, and early warnings. SUBJECTS AND METHODS: Nearly 40 years of spatial and temporal (times-series) dataset of meteorological records, including rainfall, temperature, and humidity (among others) which can be predictors of dengue were assembled for all provinces of Vietnam. This dataset was associated with case data reported to General Department of Preventive Medicine, Ministry of Health of Vietnam, during the same period. Time series of climate and disease variables were analyzed for trend and changing pattern over time. The time-series statistical analysis method sought to identify spatial (when possible) and temporal trend, seasonality, cyclical pattern of disease, and to discover anomalous outbreak events, which departed from expected epidemiological pattern, and corresponding meteorological phenomena, such as El Nino Southern Oscillation (ENSO). RESULTS: Analysis yielded largely converged findings with other locations in South East Asia for larger outbreak years and events such as ENSO. Seasonality, trend, and cycle in many provinces were persistent throughout the dataset, indicating strong potential for climate services to be used in dengue early warnings. CONCLUSION: Public health practitioners, having adequate tools for dengue control available, must plan and budget vector control and patient treatment efforts well in advance of large scale dengue epidemics to curb such events with overall morbidity and mortality. Urban and sustainable development in Vietnam might benefit from evidence linking climate change and ill-health events spatially and temporally in future planning. Long term analysis of dengue case data and meteorological records, provided a cases study evidence for emerging opportunities that on how refined climate services, could contribute to protection of public health. Keywords: dengue, Vietnam, climate change, time-series analysis, climate servic

    The 2021 report of the Lancet Countdown on health and climate change: code red for a healthy future

    Get PDF
    Executive summary The Lancet Countdown is an international collaboration that independently monitors the health consequences of a changing climate. Publishing updated, new, and improved indicators each year, the Lancet Countdown represents the consensus of leading researchers from 43 academic institutions and UN agencies. The 44 indicators of this report expose an unabated rise in the health impacts of climate change and the current health consequences of the delayed and inconsistent response of countries around the globe—providing a clear imperative for accelerated action that puts the health of people and planet above all else. The 2021 report coincides with the UN Framework Convention on Climate Change 26th Conference of the Parties (COP26), at which countries are facing pressure to realise the ambition of the Paris Agreement to keep the global average temperature rise to 1·5°C and to mobilise the financial resources required for all countries to have an effective climate response. These negotiations unfold in the context of the COVID-19 pandemic—a global health crisis that has claimed millions of lives, affected livelihoods and communities around the globe, and exposed deep fissures and inequities in the world's capacity to cope with, and respond to, health emergencies. Yet, in its response to both crises, the world is faced with an unprecedented opportunity to ensure a healthy future for all. Deepening inequities in a warming world Record temperatures in 2020 resulted in a new high of 3·1 billion more person-days of heatwave exposure among people older than 65 years and 626 million more person-days affecting children younger than 1 year, compared with the annual average for the 1986–2005 baseline (indicator 1.1.2). Looking to 2021, people older than 65 years or younger than 1 year, along with people facing social disadvantages, were the most affected by the record-breaking temperatures of over 40°C in the Pacific Northwest areas of the USA and Canada in June, 2021— an event that would have been almost impossible without human-caused climate change. Although the exact number will not be known for several months, hundreds of people have died prematurely from the heat. Furthermore, populations in countries with low and medium levels of UN-defined human development index (HDI) have had the biggest increase in heat vulnerability during the past 30 years, with risks to their health further exacerbated by the low availability of cooling mechanisms and urban green space (indicators 1.1.1, 2.3.2, and 2.3.3). Agricultural workers in countries with low and medium HDI were among the worst affected by exposure to extreme temperatures, bearing almost half of the 295 billion potential work hours lost due to heat in 2020 (indicator 1.1.4). These lost work hours could have devastating economic consequences to these already vulnerable workers—data in this year's report shows that the average potential earnings lost in countries in the low HDI group were equivalent to 4–8% of the national gross domestic product (indicator 4.1.3). Through these effects, rising average temperatures, and altered rainfall patterns, climate change is beginning to reverse years of progress in tackling the food and water insecurity that still affects the most underserved populations around the world, denying them an essential aspect of good health. During any given month in 2020, up to 19% of the global land surface was affected by extreme drought; a value that had not exceeded 13% between 1950 and 1999 (indicator 1.2.2). In parallel with drought, warm temperatures are affecting the yield potential of the world's major staple crops—a 6·0% reduction for maize; 3·0% for winter wheat; 5·4% for soybean; and 1·8% for rice in 2020, relative to 1981–2010 (indicator 1.4.1)—exposing the rising risk of food insecurity. Adding to these health hazards, the changing environmental conditions are also increasing the suitability for the transmission of many water-borne, air-borne, food-borne, and vector-borne pathogens. Although socioeconomic development, public health interventions, and advances in medicine have reduced the global burden of infectious disease transmission, climate change could undermine eradication efforts. The number of months with environmentally suitable conditions for the transmission of malaria (Plasmodium falciparum) rose by 39% from 1950–59 to 2010–19 in densely populated highland areas in the low HDI group, threatening highly disadvantaged populations who were comparatively safer from this disease than those in the lowland areas (indicator 1.3.1). The epidemic potential for dengue virus, Zika virus, and chikungunya virus, which currently primarily affect populations in central America, South America, the Caribbean, Africa, and south Asia, increased globally, with a basic reproductive rate increase of 13% for transmission by Anopheles aegypti and 7% for transmission by Anopheles albopictus compared with the 1950s. The biggest relative increase in basic reproductive rate of these arboviruses was seen in countries in the very high HDI group (indicator 1.3.1); however, people in the low HDI group are confronted with the highest vulnerability to these arboviruses (indicator 1.3.2). Similar findings are observed in the environmental suitability for Vibrio cholerae, a pathogen estimated to cause almost 100 000 deaths annually, particularly among populations with poor access to safe water and sanitation. Between 2003 and 2019, the coastal areas suitable for V cholerae transmission increased substantially across all HDI country groups—although, with 98% of their coastline suitable to the transmission of V cholerae in 2020, it is people in the low HDI country group that have the highest environmental suitability for this disease (indicator 1.3.1). The concurrent and interconnecting risks posed by extreme weather events, infectious disease transmission, and food, water, and financial insecurity are overburdening the most vulnerable populations. Through multiple simultaneous and interacting health risks, climate change is threatening to reverse years of progress in public health and sustainable development. Even with overwhelming evidence on the health impacts of climate change, countries are not delivering an adaptation response proportionate to the rising risks their populations face. In 2020, 104 (63%) of 166 countries did not have a high level of implementation of national health emergency frameworks, leaving them unprepared to respond to pandemics and climate-related health emergencies (indicator 2.3.1). Importantly, only 18 (55%) of 33 countries with a low HDI had reported at least a medium level of implementation of national health emergency frameworks, compared with 47 (89%) of 53 countries with a very high HDI. In addition, only 47 (52%) of 91 countries reported having a national adaptation plan for health, with insufficient human and financial resources identified as the main barrier for their implementation (indicator 2.1.1). With a world facing an unavoidable temperature rise, even with the most ambitious climate change mitigation, accelerated adaptation is essential to reduce the vulnerabilities of populations to climate change and protect the health of people around the world. An inequitable response fails everyone 10 months into 2021, global and equitable access to the COVID-19 vaccine had not been delivered—more than 60% of people in high-income countries have received at least one dose of a COVID-19 vaccine compared with just 3·5% of people in low-income countries. Data in this report exposes similar inequities in the global climate change mitigation response. To meet the Paris Agreement goals and prevent catastrophic levels of global warming, global greenhouse gas emissions must reduce by half within a decade. However, at the current pace of reduction, it would take more than 150 years for the energy system to fully decarbonise (indicator 3.1), and the unequal response between countries is resulting in an uneven realisation of the health benefits of a low-carbon transition. The use of public funds to subsidise fossil fuels is partly responsible for the slow decarbonisation rate. Of the 84 countries reviewed, 65 were still providing an overall subsidy to fossil fuels in 2018 and, in many cases, subsidies were equivalent to substantial proportions of the national health budget and could have been redirected to deliver net benefits to health and wellbeing. Furthermore, all the 19 countries whose carbon pricing policies outweighed the effect of any fossil fuels subsidies came from the very high HDI group (indicator 4.2.4). Although countries in the very high HDI group have collectively made the most progress in the decarbonisation of the energy system, they are still the main contributors to CO2 emissions through the local production of goods and services, accounting for 45% of the global total (indicator 4.2.5). With a slower pace of decarbonisation and poorer air quality regulations than countries in the very high HDI group, the medium and high HDI country groups produce the most fine particle matter (PM2·5) emissions and have the highest rates of air pollution-related deaths, which are about 50% higher than the total deaths in the very high HDI group (indicator 3.3). The low HDI group, with comparatively lower amounts of industrial activity than in the other groups, has a local production that contributes to only 0·7% of global CO2 emissions, and has the lowest mortality rate from ambient air pollution. However, with only 12% of its inhabitants relying on clean fuels and technologies for cooking, the health of these populations is still at risk from dangerously high concentrations of household air pollution (indicator 3.2). Even in the most affluent countries, people in the most deprived areas overwhelmingly bear the burden of health effects from exposure to air pollution. These findings expose the health costs of the delayed and unequal mitigation response and underscore the millions of deaths to be prevented annually through a low-carbon transition that prioritises the health of all populations. However, the world is not on track to realising the health gains of the transition to a low-carbon economy. Current global decarbonisation commitments are insufficient to meet Paris Agreement ambitions and would lead to a roughly 2·4°C average global temperature increase by the end of the century. The current direction of post-COVID-19 spending is threatening to make this situation worse, with just 18% of all the funds committed for economic recovery from the COVID-19 pandemic by the end of 2020 expected to lead to a reduction of greenhouse gas emissions. Indeed, the economic recovery from the pandemic is already predicted to lead to an unprecedented 5% increase in greenhouse gas emissions in 2021, which will bring global anthropogenic emissions back to their peak amounts. In addition, the current economic recession is threatening to undermine the target of mobilising US$100 billion per year from 2020 onwards to promote low-carbon shifts and adaptation responses in the most underserved countries, even though this quantity is minute compared with the trillions allocated to COVID-19 recovery. The high amounts of borrowing that countries have had to resort to during the pandemic could erase their ability to deliver a green recovery and maximise the health gains to their population of a low-carbon transition. An unprecedented opportunity to ensure a healthy future for all The overshoot in emissions resulting from a carbon-intensive COVID-19 recovery would irreversibly prevent the world from meeting climate commitments and the Sustainable Development Goals and lock humanity into an increasingly extreme and unpredictable environment. Data in this report expose the health impacts and health inequities of the current world at 1·2°C of warming above pre-industrial levels and supports that, on the current trajectory, climate change will become the defining narrative of human health. However, by directing the trillions of dollars that will be committed to COVID-19 recovery towards the WHO's prescriptions for a healthy, green recovery, the world could meet the Paris Agreement goals, protect the natural systems that support wellbeing, and minimise inequities through reduced health effects and maximised co-benefits of a universal low-carbon transition. Promoting equitable climate change mitigation and universal access to clean energies could prevent millions of deaths annually from reduced exposure to air pollution, healthier diets, and more active lifestyles, and contribute to reducing health inequities globally. This pivotal moment of economic stimulus represents a historical opportunity to secure the health of present and future generations. There is a glimpse of positive change through several promising trends in this year's data: electricity generation from renewable wind and solar energy increased by an annual average of 17% between 2013 and 2018 (indicator 3.1); investment in new coal capacity decreased by 10% in 2020 (indicator 4.2.1); and the global number of electric vehicles reached 7·2 million in 2019 (indicator 3.4). Additionally, the global pandemic has driven increased engagement in health and climate change across multiple domains in society, with 91 heads of state making the connection in the 2020 UN General Debate and newly widespread engagement among countries in the very high HDI group (indicator 5.4). Whether COVID-19 recovery supports, or reverses these trends, is yet to be seen. Neither COVID-19 nor climate change respect national borders. Without widespread, accessible vaccination across all countries and societies, SARS-CoV-2 and its new variants will continue to put the health of everybody at risk. Likewise, tackling climate change requires all countries to deliver an urgent and coordinated response, with COVID-19 recovery funds allocated to support and ensure a just transition to a low-carbon future and climate change adaptation across the globe. Leaders of the world have an unprecedented opportunity to deliver a future of improved health, reduced inequity, and economic and environmental sustainability. However, this will only be possible if the world acts together to ensure that no person is left behind

    The Susceptible Pool and Its Impact on the Risk of Death

    No full text

    Dengue infections in non-immune travellers to Thailand – CORRIGENDUM

    No full text

    Dengue infections in non-immune travellers to Thailand

    Get PDF
    Dengue is the most frequent arboviral disease and is expanding geographically. Dengue is also increasingly being reported in travellers, in particular in travellers to Thailand. However, data to quantify the risk of travellers acquiring dengue when travelling to Thailand are lacking. Using mathematical modelling, we set out to estimate the risk of non-immune persons acquiring dengue when travelling to Thailand. The model is deterministic with stochastic parameters and assumes a Poisson distribution for the mosquitoes' biting rate and a Gamma distribution for the probability of acquiring dengue from an infected mosquito. From the force of infection we calculated the risk of dengue acquisition for travellers to Thailand arriving in a typical year (averaged over a 17-year period) in the high season of transmission. A traveller arriving in the high season of transmission and remaining for 7 days has a risk of acquiring dengue of 0.2% (95% CI 0.16-0.23), whereas the risk for travel of 15 and 30 days' duration is 0.46% (95% CI 0.41-0.50) and 0.81% (95% CI 0.76-0.87), respectively. Our data highlight that the risk of non-immune travellers acquiring dengue in Thailand is substantial. The incidence of 0.81% after a 1-month stay is similar to that reported in prospective seroconversion studies in Israeli travellers to Thailand, highlighting that our models are consistent with actual data. Risk estimates based on mathematical modelling offer more detailed information depending on various travel scenarios, and will help the travel medicine provider give better evidence-based advice for travellers to dengue-endemic countries

    The 2012 dengue outbreak in Madeira: exploring the origins

    No full text
    In 2012, Madeira reported its first major outbreak of dengue. To identify the origin of the imported dengue virus, we investigated the interconnectivity via air travel between dengue-endemic countries and Madeira, and compared available sequences against GenBank. There were 22,948 air travellers to Madeira in 2012, originating from twenty-nine dengue-endemic countries; 89.6% of these international travellers originated from Venezuela and Brazil. We developed an importation index that takes into account both travel volume and the extent of dengue incidence in the country of origin. Venezuela and Brazil had by far the highest importation indices compared with all other dengue-endemic countries. The importation index for Venezuela was twice as high as that for Brazil. When taking into account seasonality in the months preceding the onset of the Madeira outbreak, this index was even seven times higher for Venezuela than for Brazil during this time. Dengue sequencing shows that the virus responsible for the Madeira outbreak was most closely related to viruses circulating in Venezuela, Brazil and Columbia. Applying the importation index, Venezuela was identified as the most likely origin of importation of dengue virus via travellers to Madeira. We propose that the importation index is a new additional tool that can help to identify and anticipate the most probable country of origin for importation of dengue into currently non-endemic countries.Published versio
    corecore