18 research outputs found

    SAGE: A tool to constrain impacts of stellar activity on transmission spectroscopy

    Full text link
    Transmission spectroscopy is a proven technique to study a transiting exoplanet's atmosphere. However, stellar surface inhomogeneities, spots and faculae, alter the observed transmission spectra: the stellar contamination effect. The variable nature of the stellar activity also makes it difficult to stitch together multi-epoch observations and evaluate any potential variability in the exoplanet's atmosphere. This paper introduces SAGE, a tool to correct for the time-dependent impact of stellar activity on transmission spectra. It uses a pixelation approach to model the stellar surface with spots and faculae, while fully accounting for limb-darkening and rotational line-broadening. The current version is designed for low to medium-resolution spectra. We used SAGE to evaluate stellar contamination for F to M-type hosts, testing various spot sizes and locations, and quantify the impact of limb-darkening. We find that limb-darkening enhances the importance of the spot location on the stellar disk, with spots close to the disk center impacting the transmission spectra more strongly than spots near the limb. Moreover, due to the chromaticity of limb darkening, the shape of the contamination spectrum is also altered. Additionally, SAGE can be used to retrieve the properties and distribution of active regions on the stellar surface from photometric monitoring. We demonstrate this for WASP-69 using TESS data, finding that two spots at mid-latitudes and a combined coverage fraction of \sim1% are favoured. SAGE allows us to connect the photometric variability to the stellar contamination of transmission spectra, enhancing our ability to jointly interpret transmission spectra obtained at different epochs.Comment: Accepted for publication in A&

    Why every observatory needs a disco ball

    Full text link
    Commercial disco balls provide a safe, effective and instructive way of observing the Sun. We explore the optics of solar projections with disco balls, and find that while sunspot observations are challenging, the solar disk and its changes during eclipses are easy and fun to observe. We explore the disco ball's potential for observing the moon and other bright astronomical phenomena.Comment: 6 pages, 7 figures. Submitted to Physics Education. Comments welcom

    Detection of Carbon Monoxide in the Atmosphere of WASP-39b Applying Standard Cross-Correlation Techniques to JWST NIRSpec G395H Data

    Full text link
    Carbon monoxide was recently reported in the atmosphere of the hot Jupiter WASP-39b using the NIRSpec PRISM transit observation of this planet, collected as part of the JWST Transiting Exoplanet Community Early Release Science (JTEC ERS) Program. This detection, however, could not be confidently confirmed in the initial analysis of the higher resolution observations with NIRSpec G395H disperser. Here we confirm the detection of CO in the atmosphere of WASP-39b using the NIRSpec G395H data and cross-correlation techniques. We do this by searching for the CO signal in the unbinned transmission spectrum of the planet between 4.6 and 5.0 μ\mum, where the contribution of CO is expected to be higher than that of other anticipated molecules in the planet's atmosphere. Our search results in a detection of CO with a cross-correlation function (CCF) significance of 6.6σ6.6 \sigma when using a template with only 12C16O{\rm ^{12}C^{16}O} lines. The CCF significance of the CO signal increases to 7.5σ7.5 \sigma when including in the template lines from additional CO isotopologues, with the largest contribution being from 13C16O{\rm ^{13}C^{16}O}. Our results highlight how cross-correlation techniques can be a powerful tool for unveiling the chemical composition of exoplanetary atmospheres from medium-resolution transmission spectra, including the detection of isotopologues.Comment: Accepted for publication in The Astrophysical Journal Letter

    Early Release Science of the Exoplanet WASP-39b with JWST NIRSpec G395H

    Full text link
    Measuring the abundances of carbon and oxygen in exoplanet atmospheres is considered a crucial avenue for unlocking the formation and evolution of exoplanetary systems. Access to an exoplanet's chemical inventory requires high-precision observations, often inferred from individual molecular detections with low-resolution space-based and high-resolution ground-based facilities. Here we report the medium-resolution (R\sim600) transmission spectrum of an exoplanet atmosphere between 3-5 μ\mum covering multiple absorption features for the Saturn-mass exoplanet WASP-39b, obtained with JWST NIRSpec G395H. Our observations achieve 1.46x photon precision, providing an average transit depth uncertainty of 221 ppm per spectroscopic bin, and present minimal impacts from systematic effects. We detect significant absorption from CO2_2 (28.5σ\sigma) and H2_2O (21.5σ\sigma), and identify SO2_2 as the source of absorption at 4.1 μ\mum (4.8σ\sigma). Best-fit atmospheric models range between 3 and 10x solar metallicity, with sub-solar to solar C/O ratios. These results, including the detection of SO2_2, underscore the importance of characterising the chemistry in exoplanet atmospheres, and showcase NIRSpec G395H as an excellent mode for time series observations over this critical wavelength range.Comment: 44 pages, 11 figures, 3 tables. Resubmitted after revision to Natur

    Early Release Science of the exoplanet WASP-39b with JWST NIRCam

    Full text link
    Measuring the metallicity and carbon-to-oxygen (C/O) ratio in exoplanet atmospheres is a fundamental step towards constraining the dominant chemical processes at work and, if in equilibrium, revealing planet formation histories. Transmission spectroscopy provides the necessary means by constraining the abundances of oxygen- and carbon-bearing species; however, this requires broad wavelength coverage, moderate spectral resolution, and high precision that, together, are not achievable with previous observatories. Now that JWST has commenced science operations, we are able to observe exoplanets at previously uncharted wavelengths and spectral resolutions. Here we report time-series observations of the transiting exoplanet WASP-39b using JWST's Near InfraRed Camera (NIRCam). The long-wavelength spectroscopic and short-wavelength photometric light curves span 2.0 - 4.0 μ\mum, exhibit minimal systematics, and reveal well-defined molecular absorption features in the planet's spectrum. Specifically, we detect gaseous H2_2O in the atmosphere and place an upper limit on the abundance of CH4_4. The otherwise prominent CO2_2 feature at 2.8 μ\mum is largely masked by H2_2O. The best-fit chemical equilibrium models favour an atmospheric metallicity of 1-100×\times solar (i.e., an enrichment of elements heavier than helium relative to the Sun) and a sub-stellar carbon-to-oxygen (C/O) ratio. The inferred high metallicity and low C/O ratio may indicate significant accretion of solid materials during planet formation or disequilibrium processes in the upper atmosphere.Comment: 35 pages, 13 figures, 3 tables, Nature, accepte

    Early Release Science of the exoplanet WASP-39b with JWST NIRISS

    Full text link
    Transmission spectroscopy provides insight into the atmospheric properties and consequently the formation history, physics, and chemistry of transiting exoplanets. However, obtaining precise inferences of atmospheric properties from transmission spectra requires simultaneously measuring the strength and shape of multiple spectral absorption features from a wide range of chemical species. This has been challenging given the precision and wavelength coverage of previous observatories. Here, we present the transmission spectrum of the Saturn-mass exoplanet WASP-39b obtained using the SOSS mode of the NIRISS instrument on the JWST. This spectrum spans 0.62.8μ0.6 - 2.8 \mum in wavelength and reveals multiple water absorption bands, the potassium resonance doublet, as well as signatures of clouds. The precision and broad wavelength coverage of NIRISS-SOSS allows us to break model degeneracies between cloud properties and the atmospheric composition of WASP-39b, favoring a heavy element enhancement ("metallicity") of 1030×\sim 10 - 30 \times the solar value, a sub-solar carbon-to-oxygen (C/O) ratio, and a solar-to-super-solar potassium-to-oxygen (K/O) ratio. The observations are best explained by wavelength-dependent, non-gray clouds with inhomogeneous coverage of the planet's terminator.Comment: 48 pages, 12 figures, 2 tables. Under review at Natur

    Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b

    Get PDF
    Hot Jupiters are among the best-studied exoplanets, but it is still poorly understood how their chemical composition and cloud properties vary with longitude. Theoretical models predict that clouds may condense on the nightside and that molecular abundances can be driven out of equilibrium by zonal winds. Here we report a phase-resolved emission spectrum of the hot Jupiter WASP-43b measured from 5-12 μm with JWST's Mid-Infrared Instrument (MIRI). The spectra reveal a large day-night temperature contrast (with average brightness temperatures of 1524±35 and 863±23 Kelvin, respectively) and evidence for water absorption at all orbital phases. Comparisons with three-dimensional atmospheric models show that both the phase curve shape and emission spectra strongly suggest the presence of nightside clouds which become optically thick to thermal emission at pressures greater than ~100 mbar. The dayside is consistent with a cloudless atmosphere above the mid-infrared photosphere. Contrary to expectations from equilibrium chemistry but consistent with disequilibrium kinetics models, methane is not detected on the nightside (2σ upper limit of 1-6 parts per million, depending on model assumptions)

    Detection of Carbon Monoxide in the Atmosphere of WASP-39b Applying Standard Cross-correlation Techniques to JWST NIRSpec G395H Data

    Get PDF
    Carbon monoxide was recently reported in the atmosphere of the hot Jupiter WASP-39b using the NIRSpec PRISM transit observation of this planet, collected as part of the JWST Transiting Exoplanet Community Early Release Science Program. This detection, however, could not be confidently confirmed in the initial analysis of the higher-resolution observations with NIRSpec G395H disperser. Here we confirm the detection of CO in the atmosphere of WASP-39b using the NIRSpec G395H data and cross-correlation techniques. We do this by searching for the CO signal in the unbinned transmission spectrum of the planet between 4.6 and 5.0 μ m, where the contribution of CO is expected to be higher than that of other anticipated molecules in the planet’s atmosphere. Our search results in a detection of CO with a cross-correlation function (CCF) significance of 6.6 σ when using a template with only ^12 C ^16 O lines. The CCF significance of the CO signal increases to 7.5 σ when including in the template lines from additional CO isotopologues, with the largest contribution being from ^13 C ^16 O. Our results highlight how cross-correlation techniques can be a powerful tool for unveiling the chemical composition of exoplanetary atmospheres from medium-resolution transmission spectra, including the detection of isotopologues

    Early Release Science of the exoplanet WASP-39b with JWST NIRCam

    No full text
    International audienceMeasuring the metallicity and carbon-to-oxygen (C/O) ratio in exoplanet atmospheres is a fundamental step towards constraining the dominant chemical processes at work and, if in equilibrium, revealing planet formation histories. Transmission spectroscopy (for example, refs. 1,2) provides the necessary means by constraining the abundances of oxygen- and carbon-bearing species; however, this requires broad wavelength coverage, moderate spectral resolution and high precision, which, together, are not achievable with previous observatories. Now that JWST has commenced science operations, we are able to observe exoplanets at previously uncharted wavelengths and spectral resolutions. Here we report time-series observations of the transiting exoplanet WASP-39b using JWST’s Near InfraRed Camera (NIRCam). The long-wavelength spectroscopic and short-wavelength photometric light curves span 2.0–4.0 micrometres, exhibit minimal systematics and reveal well defined molecular absorption features in the planet’s spectrum. Specifically, we detect gaseous water in the atmosphere and place an upper limit on the abundance of methane. The otherwise prominent carbon dioxide feature at 2.8 micrometres is largely masked by water. The best-fit chemical equilibrium models favour an atmospheric metallicity of 1–100-times solar (that is, an enrichment of elements heavier than helium relative to the Sun) and a substellar C/O ratio. The inferred high metallicity and low C/O ratio may indicate significant accretion of solid materials during planet formation (for example, refs. 3,4,) or disequilibrium processes in the upper atmosphere (for example, refs. 5,6)
    corecore