365 research outputs found

    Unipolar resistive switching in metal oxide/organic semiconductor non-volatile memories as a critical phenomenon

    Get PDF
    Diodes incorporating a bilayer of an organic semiconductor and a wide bandgap metal oxide can show unipolar, non-volatile memory behavior after electroforming. The prolonged bias voltage stress induces defects in the metal oxide with an areal density exceeding 10(17) m(-2). We explain the electrical bistability by the coexistence of two thermodynamically stable phases at the interface between an organic semiconductor and metal oxide. One phase contains mainly ionized defects and has a low work function, while the other phase has mainly neutral defects and a high work function. In the diodes, domains of the phase with a low work function constitute current filaments. The phase composition and critical temperature are derived from a 2D Ising model as a function of chemical potential. The model predicts filamentary conduction exhibiting a negative differential resistance and nonvolatile memory behavior. The model is expected to be generally applicable to any bilayer system that shows unipolar resistive switching. (C) 2015 Author(s).Dutch Polymer Institute (DPI), BISTABLE [704]; Fundacao para Ciencia e Tecnologia (FCT) through the research Instituto de Telecommunicacoes (IT-Lx); project Memristor based Adaptive Neuronal Networks (MemBrAiNN) [PTDC/CTM-NAN/122868/2010]; European Community Seventh Framework Programme FP7', ONE-P [212311]; Dutch Ministry of Education, Culture and Science (Gravity Program) [024.001.035]info:eu-repo/semantics/publishedVersio

    Deciphering the interaction of lactoferrin with V-ATPase towardsa deeper understanding of its mechanisms of action

    Get PDF
    Lactoferrin (Lf), a bioactive milk protein, exhibits strong anticancer and antifungal activities. The search for Lf targets and mechanisms of action is of utmost importance to enhance its effective applications. A common feature among Lf-treated cancer and fungal cells is the inhibition of a proton pump called V-ATPase. Lf-driven V-ATPase inhibition leads to cytosolic acidification, ultimately causing cell death of cancer and fungal cells. Given that a detailed elucidation of how Lf and V-ATPase interact is still missing, in this work we aimed to fill this gap by employing a multilevel computational approach. Molecular dynamics (MD) simulations of both proteins were performed to obtain a robust sampling of their conformational landscape, followed by clustering and protein-protein docking. Subsequently, MD simulations of the docked complexes and free binding energy calculations were carried out to evaluate the dynamic binding process and build the final ranking. This computational pipeline allowed the unraveling of the putative mechanism by which Lf inhibits V-ATPase and the identification of key binding residues that will certainly aid in the rational design of follow-up experimental studies, bridging in this way computational and experimental biochemistry.info:eu-repo/semantics/publishedVersio

    Unipolar resistive switching in metal oxide/organic semiconductor non-volatile memories as a critical phenomenon

    Get PDF
    Diodes incorporating a bilayer of an organic semiconductor and a wide bandgap metal oxide can show unipolar, non-volatile memory behavior after electroforming. The prolonged bias voltage stress induces defects in the metal oxide with an areal density exceeding 1017m-2. We explain the electrical bistability by the coexistence of two thermodynamically stable phases at the interface between an organic semiconductor and metal oxide. One phase contains mainly ionized defects and has a low work function, while the other phase has mainly neutral defects and a high work function. In the diodes, domains of the phase with a low work function constitute current filaments. The phase composition and critical temperature are derived from a 2D Ising model as a function of chemical potential. The model predicts filamentary conduction exhibiting a negative differential resistance and nonvolatile memory behavior. The model is expected to be generally applicable to any bilayer system that shows unipolar resistive switching.</p

    Reversible post-breakdown conduction in aluminum oxide-polymer capacitors

    Get PDF
    Aluminum/Al2O3/polymer/metal capacitors submitted to a low-power constant current stress undergo dielectric breakdown. The post-breakdown conduction is metastable, and over time the capacitors recover their original insulating properties. The decay of the conduction with time follows a power law (1/t)(alpha). The magnitude of the exponent alpha can be raised by application of an electric field and lowered to practically zero by optical excitation of the polyspirofluorene polymer. The metastable conduction is attributed to formation of metastable pairs of oppositely charged defects across the oxide-polymer interface, and the self-healing is related to resistive switching. (C) 2013 AIP Publishing LLC [http://dx.doi.org/10.1063/1.4802485

    Opto-electronic characterization of electron traps upon forming polymer oxide memory diodes

    Get PDF
    Metal-insulator-polymer diodes where the insulator is a thin oxide (Al2O3) layer are electroformed by applying a high bias. The initial stage is reversible and involves trapping of electrons near the oxide/polymer interface. The rate of charge trapping is limited by electron transport through the polymer. Detrapping of charge stored can be accomplished by illuminating with light under short-circuit conditions. The amount of stored charge is determined from the optically induced discharging current transient as a function of applied voltage and oxide thickness. When the charge density exceeds 8 1017/m2, an irreversible soft breakdown transition occurs to a non-volatile memory diode

    Lithium fluoride injection layers can form quasi-Ohmic contacts for both holes and electrons

    Get PDF
    Thin LiF interlayers are typically used in organic light-emitting diodes to enhance the electron injection. Here, we show that the effective work function of a contact with a LiF interlayer can be either raised or lowered depending on the history of the applied bias. Formation of quasi-Ohmic contacts for both electrons and holes is demonstrated by electroluminescence from symmetric LiF/polymer/LiF diodes in both bias polarities. The origin of the dynamic switching is charging of electrically induced Frenkel defects. The current density-electroluminescence-voltage characteristics can qualitatively be explained. The interpretation is corroborated by unipolar memristive switching and by bias dependent reflection measurements. (C) 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License

    Cytotoxicity and genotoxicity of chitooligosaccharides upon lymphocytes

    Get PDF
    Two COS mixtures and a low molecular weight chitosan (LMWC) were tested for potential cytotoxicity and genotoxicity upon human lymphocytes. Genotoxicity was evaluated in vitro by cytokinesis-blocked micronucleus and alkaline comet assays, while cytotoxicity was assessed by flow cytometry analysis. Our results suggest that COS do not exhibit any genotoxicity upon human lymphocytes, independently of MW or concentration. However, above 0.07 mg/mL COS induced strong cytotoxic effects. According to the concentration used, such cytotoxicity will induce cell death, essentially by necrosis (>0.10 mg/mL) and/or apoptosis (<0.10 mg/mL). The level of necrosis/apoptosis induced by high COS concentrations, suggests a promising use as apoptosis inducers in specific cancer situations.info:eu-repo/semantics/acceptedVersio

    The role of internal structure in the anomalous switching dynamics of metal-oxide/polymer resistive random access memories

    Get PDF
    The dynamic response of a non-volatile, bistable resistive memory fabricated in the form of Al2O3/polymer diodes has been probed in both the off- and on-state using triangular and step voltage profiles. The results provide insight into the wide spread in switching times reported in the literature and explain an apparently anomalous behaviour of the on-state, namely the disappearance of the negative differential resistance region at high voltage scan rates which is commonly attributed to a “dead time” phenomenon. The off-state response follows closely the predictions based on a classical, two-layer capacitor description of the device. As voltage scan rates increase, the model predicts that the fraction of the applied voltage, Vox , appearing across the oxide decreases. Device responses to step voltages in both the off- and on-state show that switching events are characterized by a delay time. Coupling such delays to the lower values of Vox attained during fast scan rates, the anomalous observation in the on-state that, device currents decrease with increasing voltage scan rate, is readily explained. Assuming that a critical current is required to turn off a conducting channel in the oxide, a tentative model is suggested to explain the shift in the onset of negative differential resistance to lower voltages as the voltage scan rate increases. The findings also suggest that the fundamental limitations on the speed of operation of a bilayer resistive memory are the time- and voltage-dependences of the switch-on mechanism and not the switch-off process

    Electrochemical noise and impedance of Au electrode/electrolyte interfaces enabling extracellular detection of glioma cell populations

    Get PDF
    Microelectrode arrays (MEA) record extracellular local field potentials of cells adhered to the electrodes. A disadvantage is the limited signal-to-noise ratio. The state-of-the-art background noise level is about 10 μVpp. Furthermore, in MEAs low frequency events are filtered out. Here, we quantitatively analyze Au electrode/electrolyte interfaces with impedance spectroscopy and noise measurements. The equivalent circuit is the charge transfer resistance in parallel with a constant phase element that describes the double layer capacitance, in series with a spreading resistance. This equivalent circuit leads to a Maxwell-Wagner relaxation frequency, the value of which is determined as a function of electrode area and molarity of an aqueous KCl electrolyte solution. The electrochemical voltage and current noise is measured as a function of electrode area and frequency and follow unambiguously from the measured impedance. By using large area electrodes the noise floor can be as low as 0.3 μVpp. The resulting high sensitivity is demonstrated by the extracellular detection of C6 glioma cell populations. Their minute electrical activity can be clearly detected at a frequency below about 10 Hz, which shows that the methodology can be used to monitor slow cooperative biological signals in cell populations.</p

    Planar non-volatile memory based on metal nanoparticles

    Get PDF
    Resistive switching properties of silver nanoparticles hosted in an insulating polymer matrix (poly(N-vinyl-2-pyrrolidone) are reported. Planar devices structures using interdigitated gold electrodes were fabricated. These devices have on/off resistance ratio as high as 103 , retention times reaching to months and good endurance cycles. Temperature-dependent measurements show that the charge transport is weakly thermal activated (73 meV) for both states suggesting that nanoparticles will not aggregate into a metallic filament
    corecore