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Aluminum/Al2O3/polymer/metal capacitors submitted to a low-power constant current stress

undergo dielectric breakdown. The post-breakdown conduction is metastable, and over time the

capacitors recover their original insulating properties. The decay of the conduction with time

follows a power law (1/t)a. The magnitude of the exponent a can be raised by application of an

electric field and lowered to practically zero by optical excitation of the polyspirofluorene polymer.

The metastable conduction is attributed to formation of metastable pairs of oppositely charged

defects across the oxide-polymer interface, and the self-healing is related to resistive switching.
VC 2013 AIP Publishing LLC [http://dx.doi.org/10.1063/1.4802485]

Dielectric breakdown (DB) of thin oxide layers has been

investigated intensely because of the need to increase the

reliability of metal-oxide-semiconductor field-effect transis-

tors. There is a general consensus that DB occurs initially at

one spot and results in localized currents. The Joule heat-

ing1,2 in the DB spot leads to destruction of the oxide3 and

eventually to device failure.4 Research has focused mainly

on the pre-DB mechanism.5,6 The post-DB conduction

mechanisms7,8 have received comparatively little attention.

However, it has long been known that if excessive Joule

heating is prevented, DB leads initially to bistable current-

voltage characteristics rather than directly to device failure.

The bistability is interesting because of possible application

in electronic data storage. In the research field of electronic

data storage using oxides, controlled DB is often referred to

as electroforming.

DB is usually assumed to be irreversible.9,10 This view

is now under debate because recovery of DB was recently

reported for HfO2 (Ref. 11) as well as for SiO2.12,13 It has

been proposed that restoration of the original insulating

properties after oxide DB is due to the melting of the metal-

lic filament by Joule heating14 or to annihilation of oxygen

vacancies formed during DB.15 A similar phenomenon

was recently reported for Al/Al2O3 diodes and named

“unforming,”16 but details were not presented.

Here we focus on the post-DB properties of aluminum

oxide-polymer capacitors. We show that by subjecting the

capacitor to low-power constant current stress (CCS) and by

limiting the dissipation of electrical power, the DB is reversi-

ble. The decay of the post DB conduction to the original

insulating conductance level follows a power-law decay

kinetics �(1/t)a. The exponent a is controlled by externally

applied electric fields, and the value can be reduced by pho-

toexcitation of the polyspirofluorene polymer. A model to

explain the self-healing is proposed. The consequences of

switching on non-volatile memories are also discussed.

The capacitor structure (top of Fig. 1) consists of an Al

bottom electrode, a sputtered layer of Al2O3 (20 nm), a spiro-

fluorene polymer (80 nm), and a Ba/Al (5 nm/100 nm) top

electrode that forms an ohmic contact with the polymer for

electron injection. The devices with an active area of 1 and

9 mm2 were encapsulated to exclude O2 and H2O. In all cases,

positive bias voltage refers to the bottom Al electrode being

positive with respect to the top Ba electrode. Current–voltage

(J–V) curves were obtained using a Keithley 487 picoam-

meter. CCS was maintained by a semiconductor parameter

analyzer, Agilent 4156C. A blue Light Emitting Diode (LED)

(350� k� 650 nm, kmax¼ 440 nm) was used as optical exci-

tation source.

Fig. 1 shows DB of the capacitor under CCS. A current

stress of 1 lA is applied, and the voltage across the capacitor

(9 mm2) is monitored as function of time. In the CCS

method, the current is kept constant, and, therefore, changes in

dV/dt reflect changes in the diode capacitance (C) with time,

C¼ I/(dV/dt). Initially, (first milliseconds) the voltage rises

rapidly which shows that the diode has a low capacitance of

149 nF/cm2. This value is in agreement with the value of the

series sum of the oxide capacitance (Cox¼ 600 nF/cm2) and

polymer capacitance (Cpoly¼ 200 nF/cm2). As time progresses

the dV/dt slope saturates near the value of 600 nF/cm2, which

corresponds to the estimated oxide capacitance.

The changes in capacitance before DB shows that the

diode undergoes a change from a pure, capacitor-like behav-

ior involving the oxide-polymer bilayer as dielectric, to

behavior in which only the oxide layer acts as dielectric. The

change in capacitance may be explained by the charge trans-

port properties of the polymer. Electron transport is trap lim-

ited, and the effective resistance of the polymer layer

depends on applied voltage. When a positive bias is applied,

electrons are injected from the Ba electrode into the polymer

and occupy trap sites.17 When the field is high enough,a)Electronic mail: hgomes@ualg.pt
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electrons drift through the polymer and accumulate at the

oxide/polymer interface. During the flow of this trapping

current the diode behaves as a bilayer structure, and the

change in dV/dt reflects the Cox value. The inset of Fig. 1

shows the two equivalent circuits representing the limiting

cases of the diode behavior on, respectively, a short time-

scale (t< 0.05 s in Fig. 1) and intermediate timescale

(0.05< t< 0.8 s). The dramatic change in behavior induced

by dielectric breakdown (at t¼ 0.8 s) cannot be described by

the simplified equivalent circuits shown.

During the application of constant current stress, the

voltage across the capacitor rises with time until it reaches a

critical value of around 10 V after about 0.8 s. Upon reaching

this critical voltage, a sudden drop in the voltage needed to

maintain the constant current occurs, indicating a dielectric

rupture. In the constant current method, increase in conduc-

tion is manifested by a decrease in voltage needed to sustain

the programmed current and hence the DB results in

enhanced conduction. The power consumption just before

breakdown in Fig. 1 is estimated as 0.1 mW/cm2. In compari-

son, the power used in electroforming the same type of

capacitor into an electrically bistable resistive switching

memory cell is much higher (�10 mW/cm2).

The increased conduction after breakdown is found to be

a transient effect. Fig. 2(a) shows in a double logarithmic plot

the time evolution of the electrical conduction of the capacitor

probed by applying a constant bias of 0.5 V. The conduction

decreases over time following a power law dependence

I(t)¼ (1/t)a, where a is a constant. By inducing DB in the ca-

pacitor and holding the capacitor at a constant controlled bias

voltage while intermittently probing the conduction at 0.5 V

bias, the influence of an externally applied voltage bias on the

decay of the conduction was investigated (Fig. 2(a)). The

kinetics of the current decay should not be disturbed by the

measurement procedure; for this reason, only one reading was

done per data point, and the reading voltage (0.5 V) was

applied for a short period of time (�1 s). Therefore, error bars

cannot be used. For all values of the bias voltage tested (0.5, 2,

3, and 5 V), we find power law decay kinetics for the conduc-

tion, but, surprisingly, the magnitude of the exponent a
increases with increasing bias. This indicates that the enhanced

conduction in the capacitor after DB is due to a metastable

arrangement of defects that is destabilized by application of

forward bias voltage.

To confirm this hypothesis, capacitors with oxide thick-

ness ranging from 10 nm to 40 nm were formed under CCS

of 5 lA. After forming, the current at 1 V was then moni-

tored as function of time. The corresponding decays are

shown in Fig. 2(b). For thicker oxides the decay is slower.

The reduced rate of decay of the conduction in capacitors

with thicker oxide layer supports the hypothesis that the

FIG. 1. Top: Layout of the capacitor and the schematic flat band diagram for

the dielectric layers. Bottom: The voltage across the capacitor as function of

time under CCS of 1 lA/cm2. An abrupt voltage drop is observed when

voltage reaches 10 V. Inset shows the corresponding change in capacitance

estimated from the change in slope of the voltage.

FIG. 2. (a) Current decay as function of time with different voltage

biases (0.5–5 V) applied after the diode is electroformed by CCS. The

current is measured at 0.5 V. The inset shows that the power law (a)

of current decay is directly proportional to the electric field. (b)

Thickness dependence of current degradation monitored by voltage

ramp (1 V) after forming by CCS, respectively.
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conduction arises from a metastable arrangement of defects

that is destabilized by application of bias. This sensitivity

towards applied fields indicates that the defects are charged.

The recovery of the capacitor conductance to the pristine

level is enhanced if an external voltage is applied or when

there is an internal electric field across the oxide caused by

trapped electrons at the oxide/polymer interface. In principle

the oxide self-healing should be impeded if the trapped elec-

trons are removed.

Previous studies18 have indicated that application of for-

ward voltage to the capacitors results in trapping of electrons

at the metal oxide/polymer interface. The trapped electrons

can be removed by illuminating the polymer layer with pho-

tons having energy larger than the band-gap of the polymer

(3 eV). To determine whether trapped electrons play a role in

the decay of the conduction after DB, we have studied the

effect of irradiation with blue light on the decay of the con-

duction. First, DB was induced in the capacitor, followed by

illumination for 1000 s directly after DB. The state of the ca-

pacitor was then monitored as function of time by measuring

the current at 0.5 V up to 25 h. We find that in the time period

between DB and 25 h the current remains constant (Fig. 3).

Then the capacitor was subjected to a voltage ramp up to

5 V. This should restore the trapped electron density and trig-

ger the self-healing mechanism. Indeed, after the application

of 5 V the current monitored at 0.5 V decays with time fol-

lowing again the similar power law kinetics as shown in

curve (a) of Fig. 3. After reaching the pristine state the same

capacitor was electroformed again under identical conditions

but not submitted to illumination. The current decay shown

in Fig. 3(b) follows a power law kinetics with a¼ 1. The

practically complete inhibition of the decay of the conduc-

tion after illumination indicates that electrons trapped at the

oxide/polymer interface are involved in the decay process.

To rationalize the observed behavior, we propose the fol-

lowing mechanism for conduction induced by DB and the

subsequent self-healing. Application of forward bias voltage to

the capacitor before breakdown results in injection of electrons

into the polymeric semiconductor. The electrons get trapped at

the oxide/polymer interface. Consequently, the potential dif-

ference over the oxide layer becomes equal to the applied bias

(Fig. 4(a)). In flat band condition when the applied bias voltage

approaches the band-gap of the aluminum oxide, injection of

positive charge carriers (holes) into the oxide becomes possi-

ble.19 We propose that the holes get trapped near the oxide/

polymer interface. The positive trapped holes are stabilized by

the presence of the electrons on the other side of the interface,

and the collection of holes and electrons forms an electrical bi-

layer. Because the capacitor is subjected to CCS, accumulation

of holes in the oxide will continue until the electrical resistance

is minimized. We note that the presence of an electrical two-

layer structure results in a step in the potential profile along the

capacitor. Once the conduction band edge offset between ox-

ide and polymer is compensated by the potential step due to

the bilayer and provided that the width of the bilayer is small

enough to allow for electron tunneling, the electrical resistance

will be minimized, and the hole injection process induced by

the constant current stress should come to a halt (Fig. 4(b)).

We note that for ZnO-polymer diode structures, reduction of

electrical resistance due to formation of an electrical bilayer at

the oxide/polymer interface could be demonstrated.20 Decay

of the conduction induced by DB can be interpreted as recom-

bination in the bilayer across the interface (Fig. 4(c)).

The recombination of positive charge carriers with num-

ber density p may be assumed to be of Langevin-type, and

the associated rate of recombination can be expressed as

dp

dt
¼ �c n p; (1)

where n is the density of electrons and c is a rate constant. In

order to find relations between the applied bias and carrier

densities n, p, we treat the capacitor as an electrostatic sys-

tem with three layers (Fig. 5(a)): oxide, double layer, and

polymer with thicknesses dox, ddl, and dpol and dielectric

FIG. 3. After electroforming performed with CCS (1 lA), (a) curve shows

no current degradation with an illumination (1000 s) of a blue LED applied

shortly after the electroforming. The current decay (at t¼ 25 h) restarts when

a voltage ramp (0–5 V) is introduced. (b) The line shows the power law of

current decay after electroforming, when the diode is kept in the dark and

short-circuited. To minimize the effect of the applied bias the current decay

was monitored at 0.5 V.

FIG. 4. (a) Injection and trapping of electrons at the oxide/polymer inter-

face. (b) Injection and trapping of holes into the oxide. Trapped holes are

stabilized by the presence of electrons (dipole layer). (c) Dissociation of the

dipole layer caused by recombination. (d) Trapped electrons are removed by

illumination the polymer layer with photons having energy larger than the

band-gap of the polymer.
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constants eox, edl, and epol. At the oxide/double layer interface

the positive carrier are located; at the interface between two-

layer and polymer there are electrons.

From electrostatics we derive the following relations

between applied bias Vbias and carrier densities:

Vbias ¼ Vox þ Vdl þ Vpol ¼ Vox þ Vdl ¼ doxEox þ ddlEdl;

(2)

eoxEox � edlEdl ¼ qep; (3)

�edlEdl ¼ qen: (4)

From which we derive

n ¼ a p� a b Vbias; (5)

where a¼ doxedl/(ddleoxþ doxedl) and b¼ eox/(qe dox).

Because typically ddl� dox, one expects a close to unity.

Parameter b is a capacitance per unit area per electron charge

and is of the order 1016 cm�2 V�1.18,19 Using these relations

we can now get for the rate of decay

dp

dt
¼ �c p ða p� a b VbiasÞ: (6)

This relation can be solved by integrating in parts

ðpðteÞ

pðt0Þ

dp

p ða p� a b VbiasÞ
¼
ðte

t0

�cdt ¼ �cðte � t0Þ: (7)

The integral on the left hand side can be expressed in terms

of the logarithmic function, and this gives an implicit expres-

sion for p(t). Assuming that the conduction is proportional to

the density of holes, we can then model current densities and

the decay of the conductivity. Plots of the number of holes

versus time according to Eq. (7) are given in Fig. 5. The

model qualitatively reproduces the power law type behavior,

and qualitatively reproduces the bias voltage and oxide

thickness dependence of the decay.

In conclusion we have shown that in aluminum oxide-

polymer capacitors constant current stress can induce

dielectric breakdown. The amount of electric power that is

dissipated is tightly controlled by the current limitation.

Breakdown results in enhanced conductivity that decays

overtime in a self-healing process. The dependence of the re-

covery of the insulating properties on applied bias and illu-

mination indicates that the enhanced conduction is due to an

electrical bilayer structure consisting of trapped holes in the

oxide layer and electrons in the polymer layer and that the

self-healing is due to recombination of charges comprising

the bilayer structure.
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FIG. 5. (a) Schematic representation of the capacitor as a three layer electro-

static system with the oxide, the double layer, and the polymer layer. dox,

ddl, dpol and eox, edl, epol represent the thicknesses and the dielectric con-

stants, respectively. Number of trapped holes in the oxide p versus time as

predicted by Eq. (7) for different bias voltages (b) and different oxide thick-

ness (c). The current is expected to be proportional to the number of trapped

holes.
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