23 research outputs found

    Avanços da cirurgia robótica no tratamento de doenças cardiovasculares

    Get PDF
    Várias cirurgias médicas já utilizaram a tecnologia robótica, tais como: cirurgias no estômago, bexiga, rins, próstata, cérebro e inclusive no coração, o qual proporciona-se a reparação de válvulas cardíacas e até mesmo cirurgias nas artérias. O principal objetivo do presente estudo é discutir por meio da literatura científica acerca dos avanços da cirurgia robótica no tratamento de doenças cardiovasculares. Trata-se de uma revisão sistemática da literatura, dos quais, utilizou-se as bases e biblioteca eletrônica Scielo e Periódico Capes, totalizando 5 artigos elegíveis. A cirurgia robótica tem sido um dos principais métodos utilizados em tratamentos cardiovasculares quando comparados com técnicas convencionais, sobretudo, no que diz respeito, a cirurgia de revascularização do miocárdio

    Complete Genome Sequence of Corynebacterium pseudotuberculosis I19, a Strain Isolated from a Cow in Israel with Bovine Mastitis

    No full text
    Silva A, Schneider MPC, Cerdeira L, et al. Complete Genome Sequence of Corynebacterium pseudotuberculosis I19, a Strain Isolated from a Cow in Israel with Bovine Mastitis. Journal of Bacteriology. 2011;193(1):323-324.This work reports the completion and annotation of the genome sequence of Corynebacterium pseudotuberculosis I19, isolated from an Israeli dairy cow with severe clinical mastitis. To present the whole-genome sequence, a de novo assembly approach using 33 million short (25-bp) mate-paired SOLiD reads only was applied. Furthermore, the automatic, functional, and manual annotations were attained with the use of several algorithms in a multistep process

    Whole-Genome Sequence of Corynebacterium pseudotuberculosis PAT10 Strain Isolated from Sheep in Patagonia, Argentina

    No full text
    In this work, we report the complete genome sequence of a Corynebacterium pseudotuberculosis PAT10 isolate, collected from a lung abscess in an Argentine sheep in Patagonia, whose pathogen also required an investigation of its pathogenesis. Thus, the analysis of the genome sequence offers a means to better understanding of the molecular and genetic basis of virulence of this bacterium

    Impact of synthetic and biological immunomodulatory therapy on the duration of 17DD yellow fever vaccine-induced immunity in rheumatoid arthritis

    No full text
    Abstract Background The 17DD-yellow fever (YF) vaccine induces a long-lasting protective immunity, resulting from humoral and cellular immunological memory. The treatment of rheumatoid arthritis (RA) patients with disease-modifying anti-rheumatic drugs (DMARD) may affect pre-existing 17DD-vaccine protective immunity and increase the risk of acquiring YF infection. Our goal was to determine whether DMARD would affect the duration of YF-specific protective immunity in RA patients. Methods A total of 122 RA patients, previously immunized with the 17DD-YF vaccine (1–5, 5–9, and ≥ 10 years) and currently under DMARD therapy, were enrolled in the present investigation. Immunomodulatory therapy encompasses the use of conventional synthetic DMARD alone (csDMARD) or combines with biological DMARD (cs+bDMARD). A total of 226 healthy subjects were recruited as a control group (CONT). Neutralizing antibody responses were measured by a plaque-reduction neutralization test (PRNT), and cellular immunity was evaluated by an in vitro 17DD-YF-specific peripheral blood lymphoproliferative assay. Results The data demonstrated that csDMARD therapy did not affect the duration of protective immunity induced by the 17DD-YF vaccine compared to that of CONT, as both presented a significant time-dependent decline at 10 years after vaccination. Conversely, cs+bDMARD therapy induced a premature depletion in the main determinants of the vaccine protective response, with diminished PRNT seropositivity levels between 5 and 9 years and impaired effector memory in CD8+ T cells as early as 1–5 years after 17DD-YF vaccination. Conclusions These findings could support changing the vaccination schedule of this population, with the possibility of a planned booster dose upon the suspension of bDMARD in cases where this is allowed, even before 10 years following 17DD-YF vaccination. The benefit of a planned booster dose should be evaluated in further studies. Trial registration RBR-946bv5. Date of registration: March 05, 2018. Retrospectively registere

    Duration of Humoral and Cellular Immunity 8 Years After Administration of Reduced Doses of the 17DD-Yellow Fever Vaccine

    No full text
    Corrigendum: In the original article, there was a mistake in Figure 5 as published. One orange frame erroneously shifted slightly to the right. The corrected Figure 5 appears below. Additionally, there was a mistake in Supplementary Figure 2 as published. The asterisks indicating statistical significance were erroneously deleted during the JPEG conversion. It is important to mention that no results have been modified. The corrected Supplementary Figure 2 appears below.Submitted by Nuzia Santos ([email protected]) on 2019-08-21T13:30:06Z No. of bitstreams: 1 Duration of Humoral and Cellular Immunity 8 Years After .pdf: 3045695 bytes, checksum: 524cbfff77a5b05dcf0f4526fae5fb3c (MD5)Approved for entry into archive by Nuzia Santos ([email protected]) on 2019-08-21T13:43:11Z (GMT) No. of bitstreams: 1 Duration of Humoral and Cellular Immunity 8 Years After .pdf: 3045695 bytes, checksum: 524cbfff77a5b05dcf0f4526fae5fb3c (MD5)Made available in DSpace on 2019-08-21T13:43:11Z (GMT). No. of bitstreams: 1 Duration of Humoral and Cellular Immunity 8 Years After .pdf: 3045695 bytes, checksum: 524cbfff77a5b05dcf0f4526fae5fb3c (MD5) Previous issue date: 2019Fundação Oswaldo Cruz. Instituto René Rachou. Grupo Integrado de Pesquisas em Biomarcadores. Belo Horizonte, MG, Brasil.Fundação Oswaldo Cruz. Instituto René Rachou. Grupo Integrado de Pesquisas em Biomarcadores. Belo Horizonte, MG, Brasil.Fundação Oswaldo Cruz. Instituto René Rachou. Grupo Integrado de Pesquisas em Biomarcadores. Belo Horizonte, MG, Brasil.Fundação Oswaldo Cruz. Instituto René Rachou. Grupo Integrado de Pesquisas em Biomarcadores. Belo Horizonte, MG, Brasil / Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Microbiologia. Laboratório de Virologia Básica e Aplicada. Belo Horizonte, MG, Brasil.Fundação Oswaldo Cruz. Instituto René Rachou. Grupo Integrado de Pesquisas em Biomarcadores. Belo Horizonte, MG, Brasil.Fundação Oswaldo Cruz. Instituto René Rachou. Grupo Integrado de Pesquisas em Biomarcadores. Belo Horizonte, MG, Brasil.Fundação Oswaldo Cruz. Instituto René Rachou. Grupo Integrado de Pesquisas em Biomarcadores. Belo Horizonte, MG, Brasil.Fundação Oswaldo Cruz. Instituto René Rachou. Grupo Integrado de Pesquisas em Biomarcadores. Belo Horizonte, MG, Brasil.Fundação Oswaldo Cruz. Instituto René Rachou. Grupo Integrado de Pesquisas em Biomarcadores. Belo Horizonte, MG, Brasil.Fundação Oswaldo Cruz. Instituto René Rachou. Núcleo de Estudos em Saúde Pública e Envelhecimento. Belo Horizonte, MG, Brasil.Fundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos. Laboratório de Tecnologia Virológica. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Escola Nacional de Saúde Pública. Departamento de Epidemiologia e Métodos Quantitativos em Saúde. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos. Rio de Janeiro, RJ, Brasil.Instituto de Biologia do Exército. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos. Rio de Janeiro, RJ, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Departamento de Vigilância das Doenças Transmissíveis. Brasília, DF, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Departamento de Vigilância das Doenças Transmissíveis. Brasília, DF, Brasil.Fundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto René Rachou. Grupo Integrado de Pesquisas em Biomarcadores. Belo Horizonte, MG, Brasil.Fundação Oswaldo Cruz. Instituto René Rachou. Grupo Integrado de Pesquisas em Biomarcadores. Belo Horizonte, MG, Brasil.The present study aims to determine whether 17DD-YF-specific humoral and cellular immunological memory is maintained 8-years after primary vaccination with subdoses (10,447IU;3,013IU;587IU;158IU;31IU). For this purpose, this follow-up study was carried out in a subset of volunteers (n = 98) originally enrolled in the dose-response study in 2009 and 46 non-vaccinated controls. Our results demonstrated that vaccinees, who had seroconverted following primary vaccination and had not been revaccinated, present similar neutralizing antibodies levels and YF-specific cellular memory, particularly CMCD4 and EMCD8 as compared to the reference full dose (27,476IU). Although, PRNT seropositivity rates were similar across subgroups (94, 82, 83, 94, 80, and 91%, correspondingly), only doses above 587IU elicited similar iterative proportion of seropositivity rates, calculated as a progressive decrease on seropositivity rates along time (89, 80, 80, and 91%, respectively) as compared to 158IU and 31IU (68 and 46%, respectively). Noteworthy were the strong positive correlations ("EMCD4,EMCD8" and "TNFCD8,IFNCD8") observed in most subdoses, except for 31IU. Major similarities underscored the preserved antibody titers and the outstanding levels of EMCD8, relevant correlates of protection for YF-specific immunity. These findings provide evidences to support the regular use of dose sparing strategy for YF vaccine in adults

    Comprehensive landscape of neutralizing antibody and cell-mediated response elicited by the 1/5 fractional dose of 17DD-YF primary vaccination in adults

    No full text
    Abstract The present study aimed at evaluating the YF-specific neutralizing antibody profile besides a multiparametric analysis of phenotypic/functional features of cell-mediated response elicited by the 1/5 fractional dose of 17DD-YF vaccine, administered as a single subcutaneous injection. The immunological parameters of each volunteer was monitored at two time points, referred as: before (Day 0) [Non-Vaccinated, NV(D0)] and after vaccination (Day 30–45) [Primary Vaccinees, PV(D30–45)]. Data demonstrated high levels of neutralizing antibodies for PV(D30–45) leading to a seropositivity rate of 93%. A broad increase of systemic soluble mediators with a mixed profile was also observed for PV(D30–45), with IFN-γ and TNF-α presenting the highest baseline fold changes. Integrative network mapping of soluble mediators showed increased correlation numbers in PV(D30–45) as compared to NV(D0) (532vs398). Moreover, PV(D30–45) exhibited increased levels of Terminal Effector (CD45RA+CCR7−) CD4+ and CD8+ T-cells and Non-Classical memory B-cells (IgD+CD27+). Dimensionality reduction of Mass Cytometry data further support these findings. A polyfunctional cytokine profile (TNF-α/IFN-γ/IL-10/IL-17/IL-2) of T and B-cells was observed upon in vitro antigen recall. Mapping and kinetics timeline of soluble mediator signatures for PV(D30–45) further confirmed the polyfunctional profile upon long-term in vitro culture, mediated by increased levels of IFN-γ and TNF-α along with decreased production of IL-10. These findings suggest novel insights of correlates of protection elicited by the 1/5 fractional dose of 17DD-YF vaccine

    Short-lived immunity after 17DD Yellow Fever single dose indicates that booster vaccination may be required to guarantee protective immunity in children

    No full text
    Submitted by Priscila Nascimento ([email protected]) on 2019-10-01T19:14:22Z No. of bitstreams: 1 Short-Lived_Immunity_After_17DD_Yellow_Fever_Singl.pdf: 3383889 bytes, checksum: 0a90002bb16cb94aad75a9789f4bd242 (MD5)Approved for entry into archive by Priscila Nascimento ([email protected]) on 2019-10-01T19:54:22Z (GMT) No. of bitstreams: 1 Short-Lived_Immunity_After_17DD_Yellow_Fever_Singl.pdf: 3383889 bytes, checksum: 0a90002bb16cb94aad75a9789f4bd242 (MD5)Made available in DSpace on 2019-10-01T19:54:22Z (GMT). No. of bitstreams: 1 Short-Lived_Immunity_After_17DD_Yellow_Fever_Singl.pdf: 3383889 bytes, checksum: 0a90002bb16cb94aad75a9789f4bd242 (MD5) Previous issue date: 2019Fundação Oswaldo Cruz. Instituto René Rachou. Belo Horizonte, MG, Brasil.Fundação Oswaldo Cruz. Instituto René Rachou. Belo Horizonte, MG, Brasil.Fundação Oswaldo Cruz. Instituto René Rachou. Belo Horizonte, MG, Brasil.Fundação Oswaldo Cruz. Instituto René Rachou. Belo Horizonte, MG, Brasil.Fundação Oswaldo Cruz. Instituto René Rachou. Belo Horizonte, MG, Brasil.Fundação Oswaldo Cruz. Instituto René Rachou. Belo Horizonte, MG, Brasil.Fundação Oswaldo Cruz. Instituto René Rachou. Belo Horizonte, MG, Brasil.Universidade Federal de Minas Gerais. Departamento de Fisiologia e Biofísica. Belo Horizonte, MG, Brasil.Fundação Oswaldo Cruz. Instituto René Rachou. Belo Horizonte, MG, Brasil.Fundação Oswaldo Cruz. Instituto René Rachou. Belo Horizonte, MG, Brasil.Secretaria Municipal de Saúde de Belo Horizonte. Belo Horizonte, MG, Brasil.Secretaria do Estado de Saúde de Minas Gerais. Belo Horizonte, MG, Brasil.Fundação Oswaldo Cruz. Instituto René Rachou. Belo Horizonte, MG, Brasil.Fundação Oswaldo Cruz. Escola Nacional de Saúde Pública Sergio Arouca. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos. Rio de Janeiro, RJ, Brasil.Universidade de Brasília. Faculdade de Medicina. Brasília, DF, Brasil.Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Departamento de Imunização e Doenças Transmissíveis. Brasília, DF, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Programa Nacional de Imunizações. Brasília, DF, Brasil.Fundação Oswaldo Cruz. Instituto René Rachou. Belo Horizonte, MG, Brasil.Fundação Oswaldo Cruz. Instituto René Rachou. Belo Horizonte, MG, Brasil.A vacinação contra a febre amarela (YF) é recomendada para pessoas que vivem em áreas endêmicas e representa a estratégia mais eficaz para reduzir o risco de infecção. Estudos anteriores alertaram que os regimes de reforço devem ser considerados para garantir a persistência a longo prazo dos componentes de memória específicos da 17DD-YF em adultos que vivem em áreas com circulação do vírus da YF. Considerando as menores taxas de soroconversão observadas em crianças (9 a 12 meses de idade) em comparação aos adultos, este estudo foi desenvolvido para acessar a duração da imunidade em crianças vacinadas em dose única em um período de 10 anos de seção transversal . Os níveis de anticorpos neutralizantes (PRNT) e o status fenotípico / de memória funcional das células T e B foram medidos no início, 30 a 45 dias, 1, 2, 4, 7 e 10 anos após a vacinação primária. Os resultados revelaram que uma dose única induziu 85% de soropositividade entre 30 e 45 dias e uma diminuição progressiva dependente do tempo foi observada em apenas 2 anos e diminui para valores críticos (abaixo de 60%) em períodos de tempo ≥ 4 anos . Além disso, a imunidade celular específica de YF de curta duração, mediada pelas células T e B de memória, também foi observada após 4 anos. A análise de probabilidade prevista e a memória resultante enfatizam que os correlatos de proteção (PRNT; células T CD8 + com memória efetiva; células B com memória não clássica) diminuem para valores críticos dentro de ≥4 anos após a vacinação primária. Juntos, esses resultados demonstram claramente o declínio da resposta da memória específica da 17DD-YF ao longo do tempo em crianças vacinadas principalmente entre 9 e 12 meses de idade e suportam a necessidade de um regime de reforço para garantir a persistência a longo prazo dos componentes da memória para crianças que vivem em áreas com alto risco de transmissão YF.The Yellow Fever (YF) vaccination is recommended for people living in endemic areas and represents the most effective strategy to reduce the risk of infection. Previous studies have warned that booster regimens should be considered to guarantee the long-term persistence of 17DD-YF-specific memory components in adults living in areas with YF-virus circulation. Considering the lower seroconversion rates observed in children (9–12 months of age) as compared to adults, this study was designed in order to access the duration of immunity in single-dose vaccinated children in a 10-years cross-sectional time-span. The levels of neutralizing antibodies (PRNT) and the phenotypic/functional memory status of T and B-cells were measured at a baseline, 30–45 days, 1, 2, 4, 7, and 10 years following primary vaccination. The results revealed that a single dose induced 85% of seropositivity at 30–45 days and a progressive time-dependent decrease was observed as early as 2 years and declines toward critical values (below 60%) at time-spans of ≥4-years. Moreover, short-lived YF-specific cellular immunity, mediated by memory T and B-cells was also observed after 4-years. Predicted probability and resultant memory analysis emphasize that correlates of protection (PRNT; effector memory CD8+ T-cells; non-classical memory B-cells) wane to critical values within ≥4-years after primary vaccination. Together, these results clearly demonstrate the decline of 17DD-YF-specific memory response along time in children primarily vaccinated at 9–12 months of age and support the need of booster regimen to guarantee the long-term persistence of memory components for children living in areas with high risk of YF transmission

    Immune response induced by standard and fractional doses of 17DD yellow fever vaccine

    No full text
    Abstract The re-emergence of yellow fever (YF) urged new mass vaccination campaigns and, in 2017, the World Health Organization approved the use of the fractional dose (FD) of the YF vaccine due to stock shortage. In an observational cross-sectional investigation, we have assessed viremia, antibodies, soluble mediators and effector and memory T and B-cells induced by primary vaccination of volunteers with FD and standard dose (SD). Similar viremia and levels of antibodies and soluble markers were induced early after immunization. However, a faster decrease in the latter was observed after SD. The FD led to a sustained expansion of helper T-cells and an increased expression of activation markers on T-cells early after vaccination. Although with different kinetics, expansion of plasma cells was induced upon SD and FD immunization. Integrative analysis reveals that FD induces a more complex network involving follicular helper T cells and B-cells than SD. Our findings substantiate that FD can replace SD inducing robust correlates of protective immune response against YF

    Plasticity of the pilus gene clusters <i>spaA</i> and <i>spaD</i> in <i>C. pseudotuberculosis</i>.

    No full text
    <p>A1 and B1, PiCp15 harboring the <i>spaA</i> cluster of genes; A2 and B2, PiCp7 harboring the <i>spaD</i> cluster of genes. A, all the <i>C. pseudotuberculosis</i> strains were aligned using <i>C. pseudotuberculosis</i> strain 1002 as a reference. From the inner to outer circle on A1 and A2: the biovar <i>equi</i> strains Cp31, Cp1/06-A, CpCp162, Cp258, Cp316, CpCIP52.97; and, the biovar <i>ovis</i> strains CpC231, CpP54B96, Cp267, CpPAT10, CpI19, Cp42/02-A, Cp3/99-5, CpFRC41 and Cp1002. B, all the <i>C. pseudotuberculosis</i> strains were aligned using <i>C. pseudotuberculosis</i> strain CIP52.97 as a reference. From the inner to outer circle on B1 and B2: the biovar <i>ovis</i> strains CpC231, Cp1002, CpPAT10, Cp267, CpP54B96, CpI19, Cp42/02-A, CpFRC41, Cp3/99-5, Cp1/06-A; and, the biovar <i>equi</i> strains Cp31, CpCp162, Cp316, Cp258 and CpCIP52.97. CDS, coding sequences; tRNA, transfer RNA; rRNA, ribosomal RNA; and PAI, pathogenicity island.</p
    corecore