273 research outputs found
Laboratory studies on a spherically curved Bragg spectrometer for cosmic X-ray spectroscopy
A spherical array of twenty LiF 200 crystals was built to test the performances of a freestanding, self-focussing spherical crystal cosmic X-ray spectrometer. Measurements presently available show that the size of the image for a point source at infinite distance would be 3 mm (FWHM) along the focalisation axis and 2.1 mm (FWHM) along the dispersion axis. The mosaic spread on individual crystals is less than 0.1 degree. A slightly systematic deviation from the ideal bending (0.1 degree) is observed at the edges of most crystals and this appears to be the major limitation to spectrometer performance
Search for the Tunguska event in the Antarctic snow
The Tunguska explosion in 1908 is supposed to have been produced by the impact of a small celestial body. The absence of any identifiable crater together with the huge energy released by the event suggest that the impactor exploded in midair and that its material was widely spread over the Earth. The short term contribution of such exceptional events to the total accretion rate of extraterrestrial material by the Earth could be significant. Samples were chosen in a core electromechanically drilled in 1984 near South Pole Station. There, the low temperatures, preventing melting all year long, and the nearly regular snow fall rate provide good conditions for a reliable continuous record of any infalling material. In many samples Ir was below the detection limit of the instrumentation. The iridium infall averaged over 45 samples is given. In a few samples the iridium content is significantly higher than the average: the frequency and amplitude of such fluctuations can be explained by the presence on some filters of finite size cosmic particles. No significant systematic increase above the average level is observed in the part of the core corresponding to the Tunguska event. The two major results of this study are: (1) The presence of Tunguska explosion debris in the Antarctic snow is not confirmed; and (2) The estimate of the average iridium infall, is an order of magnitude lower than the Ganapathy's background but is close to the values measured in Antarctic snow and atmospheric samples by Takahashi et al. The results are also consistent with the flux of micrometeoroids deduced from optical and radar observations or derived from the study of Greenland cosmic dust collection but are lower than the flux at mid-latitude measured in paleocene-oligocene sediments from the central part of the Pacific Ocean
Application of SERS to the determination of butylated hydroxyanisole in edible and essential oils
Surface-enhanced Raman scattering (SERS) has been applied to the determination of the antioxidant butylated hydroxyanisole (BHA), commonly used in fatty foods and oils to prevent their oxidation. The use of SERS Raman microscopy with an inexpensive homemade silver substrate allowed the direct determination of BHA in oils without any sample handling. Several edible and essential oils (used as flavorings) have been considered for this purpose. The experimental conditions, the peculiarities of each type of oil, and the characteristics of silver substrate, including scanning electron microscopy (SEM) analysis, are shown and discussed
Enhanced Molecular Dynamics Method to Efficiently Increase the Discrimination Capability of Computational Protein-Protein Docking
Protein-protein docking typically consists of the generation of putative binding conformations, which are subsequently ranked by fast heuristic scoring functions. The simplicity of these functions allows for computational efficiency but has severe repercussions on their discrimination capabilities. In this work, we show the effectiveness of suitable descriptors calculated along short scaled molecular dynamics runs in recognizing the nearest-native bound conformation among a set of putative structures generated by the HADDOCK tool for eight protein-protein systems
Surface Enhanced Second Harmonic Generation from Macrocycle, Catenane, and Rotaxane Thin Films: Experiments and Theory
Surface enhanced second harmonic generation (SE SHG) experiments on molecular structures, macrocycles, catenanes, and rotaxanes, deposited as monolayers and multilayers by vacuum sublimation on silver, are reported. The measurements show that the molecules form ordered thin films, where the highest degree of order is observed in the case of macrocycle monolayers and the lowest in the case of rotaxane multilayers. The second harmonic generation activity is interpreted in terms of electric field induced second harmonic (EFISH) generation where the electric field is created by the substrate silver atoms. The measured second order nonlinear optical susceptibility for a rotaxane thin film is compared with that obtained by considering only EFISH contribution to SHG intensity. The electric field on the surface of a silver layer is calculated by using the Delphi4 program for structures obtained with TINKER molecular mechanics/dynamics simulations. An excellent agreement is observed between the calculated and the measured SHG susceptibilities.
Butterfly distribution along altitudinal gradients: temporal changes over a short time period
Mountain ecosystems are particularly sensitive to changes in climate and land cover, but at the same time, they can offer important refuges for species on the opposite of the more altered lowlands. To explore the potential role of mountain ecosystems in butterfly conservation and to assess the vulnerability of the alpine species, we analyzed the short-term changes (2006-2008 vs. 2012-2013) of butterflies\u27 distribution along altitudinal gradients in the NW Italian Alps. We sampled butterfly communities once a month (62 sampling stations, 3 seasonal replicates per year, from June to August) by semi-quantitative sampling techniques. The monitored gradient ranges from the montane to the alpine belt (600-2700 m a.s.l.) within three protected areas: Gran Paradiso National Park (LTER, Sitecode: LTER_EU_IT_109), Orsiera Rocciavr? Natural Park and Veglia Devero Natural Park. We investigated butterflies\u27 temporal changes in accordance with a hierarchical approach to assess potential relationships between species and community level. As a first step, we characterized each species in terms of habitat requirements, elevational range and temperature preferences and we compared plot occupancy and altitudinal range changes between time periods (2006-2008 vs. 2012-2013). Secondly, we focused on community level, analyzing species richness and community composition temporal changes. The species level analysis highlighted a general increase in mean occupancy level and significant changes at both altitudinal boundaries. Looking at the ecological groups, we observed an increase of generalist and highly mobile species at the expense of the specialist and less mobile ones. For the community level, we noticed a significant increase in species richness, in the community temperature index and a tendency towards homogenization within communities. Besides the short time period considered, butterflies species distribution and communities changed considerably. In light of these results, it is fundamental to continue monitoring activities to understand if we are facing transient changes or first signals of an imminent trend
RAMAN spectroscopy imaging improves the diagnosis of papillary thyroid carcinoma
Recent investigations strongly suggest that Raman spectroscopy (RS) can be used as a clinical tool in
cancer diagnosis to improve diagnostic accuracy. In this study, we evaluated the efficiency of Raman
imaging microscopy to discriminate between healthy and neoplastic thyroid tissue, by analyzing
main variants of Papillary Thyroid Carcinoma (PTC), the most common type of thyroid cancer. We
performed Raman imaging of large tissue areas (from 100 × 100 μm2 up to 1 × 1 mm2), collecting
38 maps containing about 9000 Raman spectra. Multivariate statistical methods, including Linear
Discriminant Analysis (LDA), were applied to translate Raman spectra differences between healthy and
PTC tissues into diagnostically useful information for a reliable tissue classification. Our study is the first
demonstration of specific biochemical features of the PTC profile, characterized by significant presence
of carotenoids with respect to the healthy tissue. Moreover, this is the first evidence of Raman spectra
differentiation between classical and follicular variant of PTC, discriminated by LDA with high efficiency.
The combined histological and Raman microscopy analyses allow clear-cut integration of morphological
and biochemical observations, with dramatic improvement of efficiency and reliability in the differential
diagnosis of neoplastic thyroid nodules, paving the way to integrative findings for tumorigenesis and
novel therapeutic strategies
Tuning Local Hydration Enables a Deeper Understanding of Protein-Ligand Binding: The PP1-Src Kinase Case
Water plays a key role in biomolecular recognition and binding. Despite the development of several computational and experimental approaches, it is still challenging to comprehensively characterize water-mediated effects on the binding process. Here, we investigate how water affects the binding of Src kinase to one of its inhibitors, PP1. Src kinase is a target for treating several diseases, including cancer. We use biased molecular dynamics simulations, where the hydration of predetermined regions is tuned at will. This computational technique efficiently accelerates the SRC-PP1 binding simulation and allows us to identify several key and yet unexplored aspects of the solvent's role. This study provides a further perspective on the binding phenomenon, which may advance the current drug design approaches for the development of new kinase inhibitors
Smart Approach for the Design of Highly Selective Aptamer-Based Biosensors
Aptamers are chemically synthesized single-stranded DNA or RNA oligonucleotides widely used nowadays in sensors and nanoscale devices as highly sensitive biorecognition elements. With proper design, aptamers are able to bind to a specific target molecule with high selectivity. To date, the systematic evolution of ligands by exponential enrichment (SELEX) process is employed to isolate aptamers. Nevertheless, this method requires complex and time-consuming procedures. In silico methods comprising machine learning models have been recently proposed to reduce the time and cost of aptamer design. In this work, we present a new in silico approach allowing the generation of highly sensitive and selective RNA aptamers towards a specific target, here represented by ammonium dissolved in water. By using machine learning and bioinformatics tools, a rational design of aptamers is demonstrated. This "smart" SELEX method is experimentally proved by choosing the best five aptamer candidates obtained from the design process and applying them as functional elements in an electrochemical sensor to detect, as the target molecule, ammonium at different concentrations. We observed that the use of five different aptamers leads to a significant difference in the sensor's response. This can be explained by considering the aptamers' conformational change due to their interaction with the target molecule. We studied these conformational changes using a molecular dynamics simulation and suggested a possible explanation of the experimental observations. Finally, electrochemical measurements exposing the same sensors to different molecules were used to confirm the high selectivity of the designed aptamers. The proposed in silico SELEX approach can potentially reduce the cost and the time needed to identify the aptamers and potentially be applied to any target molecule
Análisis predictivo sobre la cantidad de horas de generación de una instalación solar fotovoltaica
En el presente trabajo, se busca obtener una función matemática que modelice la cantidad de horas de generación de una instalación solar fotovoltaica que se encuentra interconectada con la red de distribución eléctrica. Al analizar la variación de la cantidad de horas de generación a lo largo del año se observó que sigue una onda cuasisinusoidal, lo cual hizo suponer que un modelo matemático de este tipo sería adecuado para la predicción de las mismas. La función obtenida se genera en base a la cantidad de horas de generación de la instalación en 2016, y se verifica su fiabilidad contrastándola con los datos obtenidos en 2017. Dicha verificación es realizada mediante un análisis de correlación entre el modelo teórico y los datos reales. Los datos son obtenidos a través del estudio de la información de funcionamiento de la instalación provista por el equipo inversor que inyecta la energía a la red.UTN, PID ENTUNME0004313Fil: Szwarc, Gerardo D.; Rocchia, Nicolás J. (docentes tutores: Ferreyra, Diego M.; Bernardi, Emanuel) UTN Facultad Regional San Francisco, Av. de la Universidad 501, San Francisco, Córdoba - República Argentina.Peer Reviewe
- …