295 research outputs found

    Cell therapy in models for temporal lobe epilepsy

    Get PDF
    SummaryFor patients with refractory epilepsy it is important to search for alternative treatments. One of these potential treatments could be introducing new cells or modulating endogenous neurogenesis to reconstruct damaged epileptic circuits or to bring neurotransmitter function back into balance. In this review the scientific basis of these cell therapy strategies is discussed and the results are critically evaluated. Research on cell transplantation strategies has mainly been performed in animal models for temporal lobe epilepsy, in which seizure foci or seizure propagation pathways are targeted. Promising results have been obtained, although there remains a lot of debate about the relevance of the animal models, the appropriate target for transplantation, the suitable cell source and the proper time point for transplantation. From the presented studies it should be evident that transplanted cells can survive and sometimes even integrate in an epileptic brain and in a brain that is subjected to epileptogenic interventions. There is evidence that transplanted cells can partially restore damaged structures and/or release substances that modulate existent or induced hyperexcitability. Even though several studies show encouraging results, more studies need to be done in animal models with spontaneous seizures in order to have a better comparison to the human situation

    Event-related potentials reveal preserved attention allocation but impaired emotion regulation in patients with epilepsy and comorbid negative affect

    Get PDF
    Patients with epilepsy have a high prevalence of comorbid mood disorders. This study aims to evaluate whether negative affect in epilepsy is associated with dysfunction of emotion regulation. Event-related potentials (ERPs) are used in order to unravel the exact electrophysiological time course and investigate whether a possible dysfunction arises during early (attention) and/or late (regulation) stages of emotion control. Fifty epileptic patients with (n = 25) versus without (n = 25) comorbid negative affect plus twenty-five matched controls were recruited. ERPs were recorded while subjects performed a face- or house-matching task in which fearful, sad or neutral faces were presented either at attended or unattended spatial locations. Two ERP components were analyzed: the early vertex positive potential (VPP) which is normally enhanced for faces, and the late positive potential (LPP) that is typically larger for emotional stimuli. All participants had larger amplitude of the early face-sensitive VPP for attended faces compared to houses, regardless of their emotional content. By contrast, in patients with negative affect only, the amplitude of the LPP was significantly increased for unattended negative emotional expressions. These VPP results indicate that epilepsy with or without negative affect does not interfere with the early structural encoding and attention selection of faces. However, the LPP results suggest abnormal regulation processes during the processing of unattended emotional faces in patients with epilepsy and comorbid negative affect. In conclusion, this ERP study reveals that early object-based attention processes are not compromised by epilepsy, but instead, when combined with negative affect, this neurological disease is associated with dysfunction during the later stages of emotion regulation. As such, these new neurophysiological findings shed light on the complex interplay of epilepsy with negative affect during the processing of emotional visual stimuli and in turn might help to better understand the etiology and maintenance of mood disorders in epilepsy

    Neurological manifestations and neuro-invasive mechanisms of the severe acute respiratory syndrome coronavirus type 2

    Get PDF
    Background and purpose Infections with coronaviruses are not always confined to the respiratory tract and various neurological manifestations have been reported. The aim of this study was to perform a review to describe neurological manifestations in patients with COVID-19 and possible neuro-invasive mechanisms of Sars-CoV-2. Methods PubMed, Web of Science and COVID-dedicated databases were searched for the combination of COVID-19 terminology and neurology terminology up to 10 May 2020. Social media channels were followed up between 15 March and 10 May 2020 for postings with the same scope. Neurological manifestations were extracted from the identified papers and combined to provide a useful summary for the neurologist in clinical practice. Results Neurological manifestations potentially related to COVID-19 have been reported in large studies, case series and case reports and include acute cerebrovascular diseases, impaired consciousness, cranial nerve manifestations and autoimmune disorders such as the Guillain-Barre syndrome often present in patients with more severe COVID-19. Cranial nerve symptoms such as olfactory and gustatory dysfunctions are highly prevalent in patients with mild to moderate COVID-19 even without associated nasal symptoms and often present in an early stage of the disease. Conclusion Physicians should be aware of the neurological manifestations in patients with COVID-19, especially when rapid clinical deterioration occurs. The neurological symptoms in COVID-19 patients may be due to direct viral neurological injury or indirect neuroinflammatory and autoimmune mechanisms. No antiviral treatments against the virus or vaccines for its prevention are available and the long-term consequences of the infection on human health remain uncertain especially with regard to the neurological system

    Transcutaneous vagus nerve stimulation does not affect verbal memory performance in healthy volunteers

    Get PDF
    Introduction: Invasive vagus nerve stimulation (VNS) improves word recognition memory in patients with epilepsy. Recent studies with transcutaneous VNS (tVNS) have also shown positive effects on various subdomains of cognitive functioning in healthy volunteers. In this randomized, controlled, crossover study, we investigated the effect of tVNS on a word recognition memory paradigm in healthy volunteers to further investigate the potential of tVNS in the treatment of cognitive disorders. Methods: We included 41 healthy participants aged between 18 and 30 years (young age group) and 24 healthy participants aged between 45 and 80 years (older age group). Each participant completed a word recognition memory paradigm during three different conditions: true tVNS, sham, and control. During true tVNS, stimulation was delivered at the cymba conchae. Sham stimulation was delivered by stimulating the earlobe. In the control condition, no stimulation was given. In each condition, participants were asked to remember highlighted words from three test paragraphs. Accuracy scores were calculated for immediate recall after each test paragraph and for delayed recognition at the end of the paradigm. We hypothesized that highlighted words from paragraphs in the true tVNS condition would be more accurately recalled and/or recognized compared to highlighted words from paragraphs in the sham or control condition. Results: In this randomized study, tVNS did not affect the accuracy scores for immediate recall or delayed recognition in both age groups. The younger group showed significantly higher accuracy scores than the older group. The accuracy scores improved over time, and the most recently learned words were better recognized. Participants rated true tVNS as significantly more painful; however, pain was not found to affect accuracy scores. Conclusion: In this study, tVNS did not affect verbal memory performance in healthy volunteers. Our results could not replicate the positive effects of invasive VNS on word recognition memory in epilepsy patients. Future research with the aim of improving cognitive function should focus on the rational identification of optimized and individualized stimulation settings primarily in patients with cognitive deficits
    corecore