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Abstract

In recent years, an increasing number of studies have investigated the effects
of closed-loop anti-epileptic treatments. Most of the current research still is
very labour intensive: real-time treatment is manually triggered and conclu-
sions can only be drawn after multiple days of manual review and annotation of
the electroencephalogram (EEG). In this paper we propose a technique based
on reservoir computing (RC) to automatically and in real-time detect epileptic
seizures in the intra-cranial EEG (iEEG) of epileptic rats in order to immedi-
ately trigger seizure treatment.
The performance of the system is evaluated in two different seizure types: ab-
sence seizures from genetic absence epilepsy rats from Strasbourg (GAERS) and
limbic seizures from post status epilepticus (PSE) rats. The dataset consists of
452 hours iEEG from 23 GAERS and 2083 hours iEEG from 22 PSE rats.
In the default set-up the system detects 0.09 and 0.13 false positives per seizure
and misses 0.07 and 0.005 events per seizure for GAERS and PSE rats respec-
tively. It achieves an average detection delay below 1 second in GAERS and
less than 10 seconds in the PSE data. This detection delay and the number
of missed seizures can be further decreased when a higher false positive rate is
allowed.
Our method outperforms state-of-the-art detection techniques and only a few
parameters require optimization on a limited training set. It is therefore suited
for automatic seizure detection based on iEEG and may serve as a useful tool
for epilepsy researchers. The technique avoids the time-consuming manual re-
view and annotation of EEG and can be incorporated in a closed-loop treatment
strategy.
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1. Introduction

Interictal and ictal EEG from patients with epilepsy is characterised by
typical patterns that are usually visually detected for diagnostic purposes. In a
research setting the EEG is often used to evaluate therapeutic efficacy. In this
case, in humans and especially in animal research settings, many hours of EEG
require manual review and analysis. Automated seizure detection decreases the
workload and may also be more reliable compared to hours of visual analysis.

Many [1, 2, 3, 4, 5, 6] automated seizure detection programs, based on various
techniques are available. Only a few of them allow real-time seizure detection
[3, 6]. The advantage of accurate real-time seizure detection is the potential
to incorporate this detection into a so called closed-loop system that allows
immediate triggering of an intervention at the time of seizure occurrence such
as: fast working anti-epileptic drugs, Deep Brain Stimulation (DBS) [7, 8],
Vagus Nerve Stimulation (VNS) [9], ...

In recent years machine learning in general and more specifically artificial
neural networks are more commonly used to build seizure detection algorithms.
Reservoir Computing (RC) is a recurrent neural network (RNN) training tech-
nique which has been shown to achieve state-of-the-art performance for anno-
tating EEG [1]. It keeps the performance of regular RNNs but reduces the
training time dramatically [10]. For seizure detection RC has the advantage
that it is a learned non-linear dynamical system which is opposed to the mostly
linear classification techniques used in literature. This paper improves the an-
notation accuracy of [1] and extends it with the ability to detect the seizures
with a low latency. To investigate the accuracy of RC to detect epileptiform
discharges in real-time, we apply it to the EEG of genetic absence epilepsy rats
from Strasbourg (GAERS) and post status epilepticus (PSE) rats.

GAERS and PSE rats are well known and widely used models for human
absence and temporal-lobe epilepsy respectively [11]. The EEG is characterised
by very stereotyped ictal epileptiform discharges shown in Figures 1 and 2. The
models have a very good electroclinical correlation and the animals have a high
seizure frequency. For these reasons they are a useful model for drug screening
and the application of seizure detection algorithms.

2. Materials

This study compares several methods for epileptic seizure detection on two
different seizure types: absence seizures from GAERS and limbic seizures from
PSE rats. In both cases, the EEG was recorded with a custom-built amplifier.
Afterwards it was subsampled to 200Hz before being evaluated by experienced
encephalographers.

The complete dataset consists of 454 hours of data from GAERS and 2083
hours of data from PSE rats. For GAERS the training set, 5.75 hours in total,
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Figure 1: An example of a spike and wave discharge (SWD) caused by an absence seizure
in genetic absence epilepsy rats from Strasbourg. In (A) the EEG signal of one intra-cranial
channel is shown. The seizure starts at time = 2 s and stops at time = 8.9 s. (B) shows the
spectrogram of the EEG signal with a Hamming-window of 128 samples and an overlap of
120 samples.

consists of the first 15 minutes of EEG per rat that contained at least 90 seconds
of ictal EEG. The training set for the PSE data, 44 hours of data, consists of
the first 10 seizures of each rat in the dataset combined with about 5 minutes
of pre-ictal and post-ictal EEG. The rest of the data following the training data
was used for testing.

2.1. Genetic absence epilepsy rats from Strasbourg

GAERS are a strain of Wistar rats that all exhibit spontaneous absence
seizures characterized by paroxysmal unresponsiveness to environmental stimuli
and cessation of ongoing activity. These absence seizures, which are displayed
as synchronous spike and wave discharges (SWDs) on the EEG, occur mostly
when the animal is in a state of quiet wakefulness. However, they are rare
during periods of active arousal and sleep. The number of seizures and their
duration increase with age, until it reaches a maximum at about 6 months. The
EEG of SWDs shows a fundamental frequency in the range of 7 to 12 Hz and
several harmonics (see Figure 1), an amplitude varying from 300 to 1000 µV
and a duration from 0.5 to 120 s.

Dataset A was made during a study to evaluate the effect of acute and non-
acute high (130 Hz) and middle high (60 Hz) frequency DBS on the occurrence
of SWDs [7]. The rats from dataset B were part of a study to evaluate the effect
of long-term VNS.

All EEG fragments were visually reviewed, the data contaminated with stim-
ulation artefacts was removed, one EEG channel was selected and all present
SWDs with a minimum seizure length of 0.5 s were marked by an experienced
encephalographer. These annotations were used as the ‘gold standard’ in this
study. From study A, 64.5 hours of single-channel depth EEG-data recorded
in the anterodorsal thalamus from 12 different rats was used. 23% of the total
time contained the 3468 seizures which lasted on average 15 seconds. Study
B yielded 390 hours of single-channel scalp EEG-data recorded over the fron-
toparietal cortex from 11 rats. A total number of 6183 seizures made up 4.5% of
the data and lasted 10 seconds on average. Each of the seizures lasted between
0.5 and 110 s.

2.2. Post status epilepticus rats

Kainic acid is a potent central nervous stimulant, isolated from the sea-
weed digenea simplex. This excitotoxic product is an agonist of a subclass of
ionotropic glutamate receptors and a systemic injection in healthy rats triggers
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Figure 2: An example of a limbic seizure in a post status epilepticus rat. In (A) the EEG
signal is shown, the seizure starts at time = 7 s and stops at time = 31.2 s. (B) shows the
spectrogram of the EEG signal with a Hamming-window of 128 samples and an overlap of
120 samples.

a cascade of molecular and cellular events eventually leading to status epilepti-
cus, followed by a period of gradual increase in seizure frequency, which eventu-
ally stabilizes. Finally, rats display spontaneous, secondary generalized limbic
seizures which resemble those seen in temporal-lobe epilepsy patients [12].

During annotation, spontaneous EEG seizures were recognized against back-
ground by their large amplitude (more than 3 times baseline amplitude), high-
frequency EEG activity (≥ 5 Hz), with characteristic high temporal correlation
and progression of spike frequency. Figure 2 shows an example of a limbic
seizure.

Dataset C was made during a study to evaluate the effect of long-term high
frequency (130 Hz) and Poisson distributed high frequency (on average 130 Hz)
DBS on the occurrence of limbic seizures [8]. An experienced encephalogra-
pher evaluated all EEG fragments visually and marked all present seizures in
dataset C. This resulted in 913 hours of four channel EEG from 11 different
rats. Approximately 2.5% of this data consisted of 1541 seizures which have a
duration of 9 to 240 seconds with an average of 54 seconds. In five animals DBS
was applied. Episodes from this subset (C*) contained some episodes of EEG
contaminated with stimulation artefacts (in the rest of this work referred to as
C*stim). An example of a stimulation artefact is shown in Figure 3.

Figure 3: An example of stimulation artefacts caused by stimulation at 130 Hz. Because of the
low sample rate (200 Hz) this is only visible as spikes in the EEG for example at time = 3.05 s
and 9.1 s (up arrows). These spikes are somewhat similar to the many epileptic spikes as for
example at time = 7.6 s (down arrow).

Study D compared the therapeutic effect of DBS in the hippocampus and
midline thalamic nuclei. Both experimental therapies were evaluated for their
effect on the frequency of spontaneous seizures in the PSE model. The EEG
fragments were visually evaluated and annotated. This resulted in 1105 hours
of EEG from 7 different rats without simulation artefacts. 1374 seizures were
recorded in total, which lasted on average 42 seconds or between 12 and 220
seconds and represent 1.4% of the data.

In study E the effect of introducing stem cells from foetal mice brains in
the epileptogenic areas was studied on the occurrence of limbic seizures. All
EEG fragments were visually evaluated and all seizures were marked. From this
study 69 hours of 4 channel EEG from 4 different rats was used. Dataset E
contained 113 seizures that were located in about 2.5% of the data and lasted
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23 to 360 seconds with an average of 51 seconds.
Datasets C, D and E consist of 4 channel hippocampal EEG with a referential

montage for each rat. From these 4 channels one was chosen with visually the
most significant difference between ictal and inter-ictal EEG based on the first
4 seizures.

3. Methods

3.1. Seizure detection using reservoir computing

Figure 4: A schematic representation of the detection method presented in this work.

The proposed detection method, RC with Bayesian relevance regression (RC-
BRR), is constructed out of three parts: a preprocessing stage where features
get extracted from the EEG, a classification stage which is based on RC and
uses BRR for classification and a post-processing stage where two thresholds
are applied. A schematic representation is shown in Figure 4. It is an extension
of the RC with ridge regression (RC-RR) method presented in [1]. The prepro-
cessing stage is adapted such that it can be used in an online set-up, and the
training of RC is done using BRR as opposed to RR. BRR has the advantage
that it is able to train a better common model for all animals by automatically
scaling the influence of each example according to its relevance. In this section
a brief explanation will be given, for more details we refer to Appendix A.

Figure 5: An example of a SWD caused by an absence seizure in GAERS. In (A) the EEG
signal of one intra-cranial channel is shown. The seizure starts at Time = 2 s and stops at
Time = 8.9 s. The preprocessing is shown in (B), the wavelet filtered signal, and (C): the
rescaled absolute value of the filtered signal. (D) shows the activation values of 5 of the 200
reservoir neurons and (E) shows the generated output that was trained using BRR together
with the two thresholds. Every sample above the high threshold is a detection, illustrated with
the bold part of the high threshold line (the upper horizontal line). Samples neighboring these
detected samples that are above the second threshold are used for marking and illustrated by
the bold part of the low threshold line.

The GAERS data is preprocessed by filtering with a FIR based approxima-
tion of a wavelet filter that was proposed for seizure detection in [13]. The PSE
EEG is frequency filtered with a band-pass filter for the beta-band. These filters
were selected using the feature selection method from [1]. The wavelet filtered
signal of an SWD is shown in Figure 5.B. Next the signal is subsampled using
an interval based median filter. The absolute value of this signal is called the
foreground signal. Since there is a high variability in signal amplitudes between
different rats, a background signal is estimated to serve as a reference level for
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rescaling. This signal is estimated as the median of the foreground signal val-
ues of the past hour. The rescaled foreground signal is used as input for RC
(Figure 5.C).

To classify the rescaled foreground signal a Recurrent Neural Network (RNN)
is used. Most training techniques train all the weights between the neurons in
the RNN. Reservoir Computing (RC) [14] on the other hand, makes use of a
randomly created neural network, called a reservoir, from which only a single
linear output is trained. In this way the long training time and stability issues
of regular RNN training are avoided without losing the desired generalization
abilities.

In the RC set-up each non-zero input sample will excite this dynamical
system and push the reservoir to a new state. In Figure 5.D the activation values
of 5 of the 200 neurons are shown. To generate the output a linear combination
of these activations is made using BRR. This iterative process finds the optimal
weights of the linear combination to create a general model for all rats. It scales
the influence of each seizure example according to how statistically relevant
it is for the common model, such that it does not overspecialize in detecting
uncommon seizure examples.

The output of the linear combination trained using BRR results into the sig-
nal shown in Figure 5.E. To classify this continuous output value two thresholds
are applied as post-processing: a high and a low threshold. The high threshold
is used for seizure detection. Every sample above the high threshold is con-
sidered a seizure sample and thus part of a seizure (see Figure 5.E). Lowering
the high threshold allows for a shorter detection delay at the cost of more false
positives. To gain annotation precision without generating more false positives,
a low threshold is used. Every sample neighbouring a seizure sample, that is
above this low threshold, is also considered as part of a seizure.

3.2. Other detection methods

For comparison two state-of-the-art methods from literature were applied
on the same dataset: the real-time Adapted Osorio-Frei Algorithm (AOFA)
presented by Haas et al. in [6] and the annotation method RC-RR presented by
Buteneers et al. in [1]. Although the AOFA is a detection method for humans,
the original, simpler Osorio-Frei algorithm presented in [13] has been previously
applied to animal data [1, 2] and can be considered as current state of the art
for real-time seizure detection in animal models [1]. For more details on the
techniques we refer to literature [1, 6]. To allow a fair comparison between the
different methods the interval sizes and/or other free parameters were optimized
on the same training set.

A third method that was used for comparison is a linear seizure detection
method based on the presented technique but where the reservoir is left out and
the same feature selection algorithm and preprocessing stage is used. In the
next step a linear classifier is trained on these features using BRR. The output
of this classifier is then post processed using the two-threshold method of the
presented technique. For more details we refer to Appendix A and [1].
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3.3. Evaluation measures

The gold standard used for comparing the different detection methods used
in this study was the scoring by experienced encephalographers. The following
measures were used to compare the detection delays of the real-time seizure
detection methods:

• ∆delay is the average detection delay in seconds. It is only determined for
correct seizure detections. As a lower bound, the first inter-ictal sample
after the previous seizure is used and as an upper bound, the last marked
sample of the to be detected seizure.

• σdelay is the standard deviation on the detection delay.

As a measure for the number of seizures that were falsely or not detected, the
following two measures were used:

• FPPS or False Positives Per Seizure is the number of falsely detected
seizures divided by the total number of true seizures.

• FNPS or False Negatives Per Seizure is the number of missed detections
divided by the total number of true seizures.

To compare the sample based annotation precision, the following 3 measures
were used:

• Sensitivity is the percentage of correctly classified seizure samples.

• Specificity is the percentage of correctly classified inter-ictal samples.

• BER or Balanced Error Rate is the average of the error on the sensitivity
and the specificity. This error measure is used during training to optimize
the parameters.

Each of these measures is calculated for each rat individually. Then the mean
and standard deviation is calculated over all the rats and used for comparison.
Each rat thus has the same influence on the results, independent of the amount
of data that was recorded for this rat.

4. Results

4.1. Default performance

In order to evaluate the overall performance each method was trained on
the training set and tested on the test set. During training, meta parameters
were selected to achieve minimal BER. In Table 1 the results are given for
the different methods. Because of the random initialisation of RC, 10 different
systems were trained on each training set and the system that performed best
on the training set was used.
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Table 1: The results for the default settings. The averages and standard deviations (between
brackets) over the different rats of the following measures is given: detection delay, standard
deviation on the detection delay, false positives per seizure, false negatives per seizure, the
sensitivity, specificity and balanced error rate.

GAERS RC-BRR AOFA Linear RC-RR
∆delay (s) 0.97 (0.33) 2.45 (0.6) 1.01 (1.05) n/a
σdelay (s) 0.93 (0.44) 1.78 (1.25) 4.77 (10.91) n/a
FPPS 0.091 (0.163) 1.40 (2.96) 2.23 (3.01) 0.96 (1.05)
FNPS 0.065 (0.055) 0.177 (0.200) 0.020 (0.037) 0.067 (0.064)
Sens (%) 96.2 (2.4) 67.6 (20.4) 95.9 (5.1) 96.4 (2.0)
Spec (%) 98.2 (1.6) 97.8 (2.0) 88.2 (5.8) 96.2 (2.3)
BER (%) 2.8 (1.4) 17.3 (10.1) 7.9 (3.3) 3.7 (1.8)

PSE RC-BRR AOFA Linear RC-RR
∆delay (s) 9.4 (2.1) 20.3 (3.5) 15.1 (4.2) n/a
σdelay (s) 5.7 (6.5) 7.4 (8.7) 12.0 (16.3) n/a
FPPS 0.128 (0.120) 3.43 (3.77) 1.11 (1.14) 0.256 (0.211)
FNPS 0.005 (0.016) 0.032 (0.067) 0.026 (0.056) 0.003 (0.064)
Sens (%) 95.8 (2.3) 75.4 (13.8) 81.7 (13.2) 87.2 (9.7)
Spec (%) 98.1 (1.1) 96.4 (3.0) 96.9 (2.9) 97.9 (2.4)
BER (%) 3.1 (1.3) 14.1 (7.6) 10.7 (6.9) 7.4 (4.8)

4.2. Depth versus epidural EEG

Datasets A, C, D and E were recorded using depth electrodes, dataset B on
the other hand was recorded using epidural electrodes. To compare whether
the system performs better when the EEG is recorded using depth or epidural
electrodes we present the results for the RC-BRR method on datasets A and
B separately in Table 2. It shows that when depth electrodes are used a lower
detection delay is achieved with less FPPS and FNPS.

4.3. EEG with or without stimulation artefacts

The EEG of several animals from study C contains stimulation artefacts. In
Table 3 the results are shown on the data without stimulation artefacts C*clean
and the data with simulation artefacts C*stim. It shows that artefacts have
no significant influence on the detection delay but they increase the number of
FNPS and the sample based detection error while only slightly reducing the
number of FPPS.

4.4. Performance versus detection delay

The presented method, the AOFA and the linear method can be altered
to achieve a lower detection delay. Each method has one specific parameter
that has the most influence. For the presented method the threshold changes
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Table 2: A comparison in performance of the RC-BRR method on depth and epidural EEG
from datasets A and B respectively. The averages and standard deviations (between brackets)
over the different rats of the following measures is given: detection delay, standard deviation
on the detection delay, false positives per seizure, false negatives per seizure, the sensitivity,
specificity and balanced error rate.

GAERS A (depth) B (epidural)
∆delay (s) 0.82 (0.22) 1.14 (0.36)
σdelay (s) 0.85 (0.45) 1.02 (0.44)
FPPS 0.039 (0.026) 0.147 (0.226)
FNPS 0.024 (0.021) 0.109 (0.046)
Sens (%) 97.2 (2.1) 95.2 (2.6)
Spec (%) 97.2 (1.6) 99.3 (0.2)
BER (%) 2.8 (1.7) 2.8 (1.2)

Table 3: A comparison in performance of the RC-BRR method on EEG with or without stim-
ulation artefacts. It was tested on the animals from study C that were stimulated: C*clean
represents the EEG data without stimulation artefacts and C*stim the EEG data with stim-
ulation artefacts. The averages and standard deviations (between brackets) over the different
rats of the following measures is given: detection delay, standard deviation on the detection
delay, false positives per seizure, false negatives per seizure, the sensitivity, specificity and
balanced error rate.

PSE C*clean C*stim
∆delay (s) 7.1 (2.5) 6.7 (3.3)
σdelay (s) 3.9 (2.3) 4.1 (5.9)
FPPS 0.084 (0.080) 0.048 (0.069)
FNPS 0.013 (0.027) 0.043 (0.043)
Sens (%) 96.6 (2.0) 89.8 (13.3)
Spec (%) 98.6 (0.3) 96.6 (1.3)
BER (%) 2.4 (0.9) 7.3 (6.4)

the response time. Lowering the threshold allows for an earlier detection but
increases the number of falsely detected seizures. Increasing the threshold delays
the detection and increases the number of missed seizures but decreases the
number of false detections. To allow the AOFA method to detect seizures with
a lower delay, the minimal duration of a seizure needs to be lowered. The
threshold plays a less significant role and is thus optimized on the training
set for each minimal duration setting. The most important parameter for the
linear method is the interval length L (see Section Appendix A.1). The shorter
this interval the shorter the detection delay, but also the more falsely detected
seizures.

In the left graphs of Figures 6 and 7 the FPPS is plotted as a function of
the detection delay for the GAERS and PSE dataset respectively. The right
graphs of Figures 6 and 7 show the FNPS as a function of the delay. Settings
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that resulted in more than 4 FPPS were not included.

Figure 6: On the left the number of False Positives Per Seizure and on the right the number
of False Negatives Per Seizure in function of the detection delay in seconds for the GAERS
dataset

Figure 7: On the left the number of False Positives Per Seizure and on the right the number of
False Negatives Per Seizure in function of the detection delay in seconds for the PSE dataset.

4.5. Comparison of the ‘golden standards’

Figure 8: An example of a scratch artefact which starts at time = 3s and ends at time = 6s.

It is a well known fact that humans often disagree when marking epileptic
seizures. We took a small dataset used to train students in marking epileptic
seizures of 3 PSE rats. These 24 hours for each rat contain in total 72 seizures
and 183 artefacts, mostly scratch artefacts as shown in Figure 8. As golden
standard we asked 4 experienced encephalographers to mark the data and come
to an agreement. In table 4 we show the performance of our method, trained
on the training sets of dataset C, D and E, and the results of 2 experienced
encephalographers, who had never seen the data before, against this golden
standard.

5. Discussion

The main findings of this study are shown in Table 1. We can conclude that,
when the techniques are optimized for optimal BER, the presented RC-BRR
method significantly outperforms state-of-the-art techniques for annotation as
well as real-time detection purposes. For the absence seizures in GAERS, which
last on average 10 to 15 seconds, an average detection delay of less than a second
was achieved. This resulted in 0.09 FPPS and 0.065 FNPS which means that
only 1 out of 12 detections is a false detection, there are 1.9 false detections per
hour and only 1 out of 16 seizures is missed. RC-BRR achieves an average BER
of 2.8% with a sensitivity of 96% and a specificity of 98%. A detection delay of
9.2 seconds was achieved for the limbic seizures in the PSE dataset which last
on average 50 seconds. This resulted in 0.13 FPPS and 0.005 FNPS, so that 1
out of 9 detections is a false detection, there are 0.19 false positives per hour
and only 1 out of 200 seizures is missed. On a sample basis a BER of 3.1% was
achieved with a sensitivity of 96% and a specificity of 98%.

RC-BRR not only outperforms the other techniques in average performance
it also has a significantly lower standard deviation. This shows that the perfor-
mance of the presented method is less influenced by differences between each
animal in the dataset. It is thus better able to create a general model for seizure
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Table 4: A comparison in performance of the presented method and two experienced en-
cephalographers (E1 and E2) on a small student dataset. As golden standard 4 different
encephalographers were asked to come to an agreement. The averages and standard devi-
ations (between brackets) over the different rats of the following measures is given: false
positives per seizure, false negatives per seizure, the sensitivity, specificity and balanced error
rate. The data contains 183 artefacts, on average 4.7 (4.8) artefacts per seizure, most of which
are scratch artefacts.

PSEstudent RC-BRR E1 E2
FPPS 0.15 (0.17) 0.010 (0.016) 0.13 (0.18)
FNPS 0.096 (0.140) 0.029 (0.029) 0.010 (0.017)
Sens (%) 85.0 (4.5) 91.4 (3.2) 90.8 (5.4)
Spec (%) 99.5 (0.3) 100 (0.0003) 99.9 (0.0002)
BER (%) 7.9 (2.3) 4.3 (1.6) 4.6 (2.7)

detection. The comparison with the RC-RR method shows that the common
model created by BRR significantly outperforms the method without BRR. Be-
cause the presented technique is a non-linear method and most methods from
literature are linear, a second seizure detection method was presented here. In
this linear method RC is replaced with a linear classifier. Because RC-BRR
outperforms this linear method it shows the advantage of using RC as a clas-
sifier. In practice the presented linear method is a more advanced version of
the AOFA where multiple features can be used instead of one. It was not only
able to outperform AOFA because the feature selection algorithm selected more
than 1 feature but also because it was trained using BRR.

From Table 2 one can infer that there is a difference in performance when
depth electrodes are used as opposed to epidural electrodes. The system achieves
a slightly lower detection delay with a significantly lower number of FPPS and
FNPS. In our experience this is due to the fact that there is less noise in the
EEG which makes that the difference between ictal and inter-ictal EEG is more
profound in terms of signal strength and signal shape. For optimal performance
it is thus advised to use the technique in combination with depth electrodes.

Counter intuitively stimulation artefacts do not increase the number of FPPS
as shown in Table 3. This is possibly due to the fact that a stimulation of 130
Hz was applied which does not fall within the beta band that was used for
pre-processing. The artefacts however do increase the background signal level
which results in a higher number of FNPS and a lower sensitivity and number
of FPPS. If the exact time and duration of the stimulation is known, one could
ignore these samples while estimating the background signal. However, the
increased background scaling has no influence on the detection delay.

If the algorithms are altered to result in a lower detection delay, this comes
at the cost of more false detections as shown in Figures 6 and 7. This is because
the first few samples of ictal EEG better resemble normal EEG. The number of
missed seizures on the other hand decreases because less outspoken seizures will
also be detected. Figures 6 and 7 show that, for a given number of FPPS or
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FNPS, RC is able to detect the seizures with less delay than the other methods.
If 4 FPPS are allowed, i.e. 1 in 5 detections is a true positive, RC achieves an
average detection delay of 0.2s and 2.1s, the linear method needs 0.8s and 13s,
and the AOFA-method will take more than 2s and 15s to detect a seizure on
the GAERS and PSE data respectively. When minimal FPPS and FNPS are
required we see that RC-BRR is the only method that was able to achieve less
than 10% FPPS and FNPS at the same time.

In [3] a technique to detect epileptic seizures in PSE rats was presented that
was able to predict seizures by about 10 to 15 seconds. However, this resulted in
more than 100 FPPS1. Even though our technique achieves similar performance
if such a high number of FPPS is allowed, we do not believe it has any practical
value. If for instance DBS or VNS is applied during a seizure, which lasts about
1 minute in PSE rats, you apply continues stimulation once you reach more
than 15 seizures per 24 hours. PSE rats however have on average 35 seizures
per 24 hours.

Adapting the methods to achieve a lower detection delay deteriorates the
sample based annotation accuracy of the methods. Because annotation is mostly
done retrospectively, the results are not shown here. One could use a set-up for
real-time detection and another set-up for annotation. Since for the presented
method no new training is required and only the threshold is altered to achieve
a lower detection delay, the same set-up can be used for both tasks. One only
needs to use two different high thresholds: one for real-time detection and one
for annotation.

Researchers often disagree when marking EEG, which is reaffirmed in table
4. Even though our method performed worse than both experienced encephalo-
graphers, it is fair to say that the performance of our method is comparable
with atleast one of the encephalographers. The artefacts that caused false posi-
tives were all scratch artefacts and often coincided with the errors made by the
encephalographers. Other artefacts or sleep spindels did not generate any false
positives.

In summary we can thus conclude that the presented method is well suited
as an aid for research in animal models for epilepsy. It achieves state of the art
performance for annotation purposes and can be used in a closed loop system
where a low detection delay and a low number false and missed detections is
desired.
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Appendix A. Seizure detection using Reservoir Computing

In this appendix the detection method is explained in more detail. It is constructed
out of four main parts: a preprocessing stage where EEG features get extracted, a non-
linear mapping stage which is based on RC, a classification stage that uses BRR for
training and a thresholding stage.

Appendix A.1. Preprocessing

For preprocessing of the GAERS data a FIR-filter based on the level 3 DAUB4
wavelet filter, first presented for seizure detection in [13], is used to extract the relevant
information from the EEG. The PSE data is frequency filtered between 12 and 30
Hz, the beta-band. These features were selected using the feature selection algorithm
presented in [1]. This signal, sampled at 200 Hz, is then subdivided in non-overlapping
intervals with length L = 0.02 s and L = 0.2 s, for the GAERS and PSE data
respectively, from which the foreground input signal FG is calculated as follows:

FGk = median{|sk|, |sk−1|, ..., |sk−200L+1|},

where sk represents the filtered EEG signal. Since there is a high variability in signal
amplitudes between different animals, a background signal is estimated for each of
the EEG-features to serve as a reference level for rescaling. The background signal is
estimated from the foreground signal as follows:

BGk = median{FGk, ..., FGk−H},

with H the number of FG-samples in one hour. This is a quantile based estimation
technique as proposed in [15] and is based on the assumption that epileptic seizures
occur less than half of the time. To save calculation time BGk is only updated every
minute and thus left unchanged for the next 59 s of FG-samples.

Appendix A.2. Reservoir computing

The operation of the RC [16] can be described as follows. We use x[k] to represent
the current activation values of the neurons in the reservoir at time k, u[k] as the
input vector, y[k] for the desired output and ŷ[k] for the output generated by the RC
system. The inputs of the neurons in the reservoir are connected with the bias as well
as with the input and the output of all the neurons in the reservoir. The weights of
these connections are represented respectively by the weight matrices Wbias, Winp and
Wres. If n is the number of neurons these matrices respectively have the following
shapes: n-by-1, n-by-N and n-by-n with N equal to the number of inputs. The
elements of the bias weight matrix Wbias and the internal weight matrix Wres are
initially uniformly distributed between -1 and 1. All elements in the input weight
matrix Winp are randomly set to -1 or +1. The sparseness of these matrices as well as
the initialization process are however, not critical for the performance. If basic sigmoid
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neurons, a weighted sum followed by the hyperbolic tangent function, are used, the
state update equation is given by:

x[k + 1] = tanh(Wresx[k] + Winpu[k] + Wbias).

In this work, we used leaky integrator neurons, i.e. basic sigmoid neurons followed by
a first-order low-pass filter. The state equation now becomes:

x[k + 1] = (1− γ) ·x[k] + γ tanh(Wresx[k] + Winpu[k] + Wbias).

In this equation γ represents the leak rate which sets the cutoff frequency of the low-
pass filter in the neurons. This extra parameter of leaky integrator neurons is used to
tune the reservoir memory and timescales [17].

The processing power of reservoirs is the greatest when they operate at the edge
of stability [18]. Therefore, the spectral radius, the largest norm of the eigenvalues of
Wres, the weights of Winp and Wbias and the leak-rate are scaled to achieve optimal
reservoir dynamics [19]. The meta parameters described in [1] were used in this work.

Appendix A.3. Bayesian relevance regression

To generate the output the following equation is used:

Ŷ[k] = Wout

[
X[k]

1

]
,

in which ‘1’ represents the connection from the bias to the output. The weights of
the output weight matrix Wout are trained using BRR. This form of regression was
developed to provide a way to automatically scale the influence of each seizure example
according to its statistical relevance. This allows to train one common model that is
suited for every animal of the same seizure type without over-fitting to uncommon
seizure examples.

Analogously to the formulation of the automatic outlier detection technique pre-
sented in [20] we can deduct BRR as follows. If we consider a data set of input-target
pairs (xi, yi), we can follow the probabilistic formulation of bayesian regression [21]
and assume that the targets are samples from a model with additive noise:

yi = wTxi + εi,

where εi is a sample from a noise process which we assume to be a zero mean Gaussian
with a variance β

−1/2
i . As opposed to (sparse) Bayesian regression [21, 22] we consider

each data point a sample of a different noise process. We get the following for the
probability of Y given the data and the model and the probability of the model:

p(Y|Xw,β− 1
2 ) = N(Y|Xw,β− 1

2 ) (A.1)

=

(
1

2π

)M
2

|β|
1
2 exp{−1

2
(Y −Xw)Tβ(Y −Xw)} (A.2)

p(w|α) = N(w|µ, α) (A.3)

=

(
1

2π

)N
2

|α|
N
2 exp{−α

2
(w − µ)T (w − µ)}, (A.4)

with N the number inputs, M the number of data points and β a diagonal matrix
with on the i’th diagonal element the variance βi of the model on the i’th data point.
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If we consider the posterior covariance matrix S−1
n = αI+XTβX, we can compute

the weights and rewrite the evidence function, the probability of the data given the
hyper parameters, as follows:

w = SnX
TβY (A.5)

p(Y|α,β) =

(
1

2π

)N+M
2

|α|
N
2 |β|

1
2 |Sn|

1
2 exp{−E(w)}, (A.6)

with E(w) = 1
2
(Y−Xw)Tβ(Y−Xw)+ α

2
(w−µ)T (w−µ). Maximising this evidence

function is equivalent to maximising the logarithm of this evidence function. Taking
the derivative of ln(p(Y|α,β)) to α and βi and setting to zero gives the following:

δ

δα
ln(p(Y|α,β)) =

N

2α
− 1

2
tr(Sn)− 1

2
||w − µ||2 = 0 (A.7)

δ

δβi
ln(p(Y|α,β)) =

1

2βi
− 1

2
tr(Sn(xix

T
i ))− 1

2
(yi −wTxi)

2 = 0. (A.8)

These equations yield:

αi =
N

tr(Sn) + (w − µ)2
(A.9)

βi =
1

tr(Sn(xixTi )) + (yi −wTxi)2
. (A.10)

(A.11)

Sn in these equations still contains α and the βis we try to find, but iteratively
calculating Sn and w followed by α and each βi converges to the optimal values
[20, 21, 22].

To use this system for automatic relevance determination we cluster the data points
such that we get one cluster for each seizure example i out of K examples. If N is
the number of inputs, the update algorithm to find the optimal weights is given in
Algorithm 1.

Appendix A.4. Classification based on two-thresholds

The output of the reservoir Ŷ[k] is a continuous output that approximates the
desired output Y[k]. To transform this continuous-valued output to a discrete clas-
sification label, a two-threshold setup was used. From the moment the output Ŷ[k]
is higher than the first, high threshold a detection is made. To improve annotation
precision, all direct neighbouring samples higher than the second, low threshold are
then also annotated as a seizure. All other samples are considered as regular EEG.

The thresholds were optimized for a minimal BER (see Section 3.3) during training.
To lower the detection delay the high threshold can be decreased. This results in less
missed detections but also results in more false positives. For annotation the output
is up-sampled to 200 Hz, the original sample rate of the input, after applying the
thresholds.
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