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Abstract
Patients with epilepsy have a high prevalence of comorbid mood disorders. This study aims

to evaluate whether negative affect in epilepsy is associated with dysfunction of emotion

regulation. Event-related potentials (ERPs) are used in order to unravel the exact

electrophysiological time course and investigate whether a possible dysfunction arises dur-

ing early (attention) and/or late (regulation) stages of emotion control. Fifty epileptic patients

with (n = 25) versus without (n = 25) comorbid negative affect plus twenty-five matched con-

trols were recruited. ERPs were recorded while subjects performed a face- or house-

matching task in which fearful, sad or neutral faces were presented either at attended or un-

attended spatial locations. Two ERP components were analyzed: the early vertex positive

potential (VPP) which is normally enhanced for faces, and the late positive potential (LPP)

that is typically larger for emotional stimuli. All participants had larger amplitude of the early

face-sensitive VPP for attended faces compared to houses, regardless of their emotional

content. By contrast, in patients with negative affect only, the amplitude of the LPP was sig-

nificantly increased for unattended negative emotional expressions. These VPP results indi-

cate that epilepsy with or without negative affect does not interfere with the early structural

encoding and attention selection of faces. However, the LPP results suggest abnormal reg-

ulation processes during the processing of unattended emotional faces in patients with epi-

lepsy and comorbid negative affect. In conclusion, this ERP study reveals that early object-

based attention processes are not compromised by epilepsy, but instead, when combined

with negative affect, this neurological disease is associated with dysfunction during the later

stages of emotion regulation. As such, these new neurophysiological findings shed light on

the complex interplay of epilepsy with negative affect during the processing of emotional vi-

sual stimuli and in turn might help to better understand the etiology and maintenance of

mood disorders in epilepsy.
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Introduction
Patients with epilepsy have a very high prevalence of comorbid psychiatric disorders [1]. Nega-
tive affect occurs in up to 80% of patients with epilepsy [2] and may manifest as major depres-
sive disorder (MDD) meeting the diagnostic and statistical manual IV (DSM-IV) criteria, or
atypical mood disorders with waxing and waning affective symptoms called “interictal dys-
phoric disorder” [3] or “dysthymic-like disorder of epilepsy” [1]. In patients with epilepsy, de-
pressive symptoms have a major negative impact on the quality of life [4–5] and increase the
risk of suicide up to 10-fold [6]. Given the high impact on the quality of life and the associated
elevated mortality due to suicide a better understanding of the pathogenic mechanisms of neg-
ative affect in epilepsy is important [7].

Negative affect in epilepsy has been attributed to several causes, including the psychological
reaction to the chronic seizure disorder, endocrine or metabolic effects of seizures, adverse ef-
fects of antiepileptic drugs (AEDs) and common pathophysiological mechanisms between de-
pression and epilepsy, such as neurotransmitter disturbances and abnormal frontotemporal
networks [1–2, 8–10]. The common pathological changes can compromise the integrity of a
functional neuronal network that is implicated in emotion control [11–13]. Emotion control
refers to both early automatic forms of regulation, like controlling attention to emotional
arousing stimuli, as well as higher forms of cognitive control, such as the conscious reappraisal
of the emotional valence of stimuli [11]. Recently, Holtzheimer and Mayberg proposed a
model for negative affect that is hallmarked by dysfunction of both forms of emotion control
[14]. This model emphasizes that it is not the negative affect state that is abnormal. Instead, it
is the tendency to enter the negative affect state and the inability to disengage from this state
because of the impaired emotion regulation that defines mood disorders. Therefore, this study
focuses on emotion control and more specifically investigates whether negative affect in pa-
tients with epilepsy is associated with dysfunction during early attention processes and/or later
stages of emotion regulation.

To address this question, we used a variant of the face- or house-matching task [15], a stan-
dard task for measurement of attention and emotion regulation [16–22]. In this procedure, par-
ticipants are shown a display with two houses and two faces presented in vertical and horizontal
pairs. They have to attend only one pair and have to make a demanding same/different judg-
ment on the attended pair of stimuli. The faces have either a neutral or emotional expression
and are positioned either in attended or unattended spatial locations. This paradigm provides
an ideal situation in which both attention and emotion can be manipulated independently [16].

Event-related potentials (ERP) are recorded during this paradigm in order to disentangle ef-
fect of attention and emotion during early (attention) and late (regulation) stages of emotion
processing. One previous ERP study has investigated spatial attention during the face- or
house matching task in healthy participants [17]. This study has demonstrated that the early
face-sensitive N170 component amplitudes were significantly enhanced when faces were at at-
tended spatial locations. The N170 is a negative component with latency around 170 ms that
has a larger amplitude for faces than houses or other objects at occipitotemporal electrodes.
The N170 has remarkable temporal and functional similarity with the vertex positive potential
(VPP) that is recorded at the central midline electrode and is also typically enhanced in re-
sponse to face stimuli [23–26]. Hence, it has been suggested that both N170 and VPP compo-
nents are part of the same neural dipole located in or near the fusiform gyrus [27–28]. The
temporally coincident N170 and VPP are the earliest markers of a reliable processing difference
between faces and objects and are linked with the structural encoding of faces [17, 27]. There-
fore, we measured the early face-sensitive N170/VPP components to examine whether epilepsy
and negative affect have an influence on object-based attention.
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Many ERP studies that study emotion have focused on a broad parietal positive component
that occurs roughly 300 ms after emotional stimuli, called the late positive potential (LPP). The
LPP is a robust visual ERP component that is known to have an enhanced amplitude for both
positive and negative arousing emotional stimuli compared to neutral stimuli [29–33]. The
magnitude of the LPP is sensitive to emotion regulation strategies and can be reduced by reap-
praisal of the emotional significance of stimuli, e.g. reappraising unpleasant stimuli as less neg-
ative decreases the LPP amplitude [33–35]. Hence, the LPP can be used indirectly as an
electrophysiological marker of the covert processing of the emotional intensity of the visual
stimuli.

In the present study, attention and emotion effects during the face- or house-matching task
were compared between epileptic patients with vs. without comorbid negative affect and
matched healthy controls. ERPs were used in order to explore the exact electrophysiological
time course and investigate whether a possible dysfunction arises during early (attention, VPP/
N170) and/or late (regulation, LPP) stages of emotion control.

Methods

1 Ethics statement
The study was approved by the ethics committee of Ghent University Hospital and conducted
in accordance with the declaration of Helsinki. After a full description of the procedure was
provided and explained, all participants gave written informed consent prior to participation.

2 Participants
A total of fifty patients with refractory epilepsy were included (M/F: 26/24, mean age 34.7
years). The study took place during presurgical video-EEG monitoring in the Reference Center
for Refractory Epilepsy (Ghent University Hospital, Belgium). Patients were included in the
study if they met the following inclusion criteria: (i) confirmed epilepsy based on continuous
video/EEG monitoring, (ii) age 18–65, (iii) Full Scale IQ score� 70 on the Wechsler Adult In-
telligence Scale, Third Edition (WAIS-III). Twenty-five healthy volunteers free from neurologi-
cal or psychiatric symptoms were matched as closely as possible to the patients with respect to
age, sex, and education (M/F: 14/11, mean age 37.0 years). The main clinical characteristics of
participants are summarized in Table 1.

Presence of negative affect was assessed by using the validated Dutch version of the Beck
Depression Inventory II (BDI-II) [36–37]. The BDI-II is a 21-item self-report questionnaire
that assesses the severity of depressive symptomatology, including affective, cognitive, behav-
ioral, somatic and motivational symptoms of depression. Individuals rate each symptom on a
scale ranging from 0 to 3. Higher scores on the BDI reflect more negative affect with scores
ranging from 0 to 63. Using the criteria proposed by Beck et al. (0–13 minimal, 14–19 mild,
20–28 moderate, 29–63 severe depressive symptoms) [36], a cut-off score of>14 was used to
subdivide the patients in two groups: 25 patients with negative affect (mean BDI: 23.6� 9.4),
25 patients without negative affect (mean BDI: 5.0� 3.5) and 25 control participants (mean
BDI: 3.6� 3.0). In addition, state and trait anxiety levels of all participants were measured, fol-
lowing standard practice, using the State-Trait Anxiety Inventory (STAI) [38], translated in
Dutch [39].

3 Stimuli
All stimuli comprised displays of four pictures, with two faces and two houses arranged in ver-
tical and horizontal pairs around a central black fixation cross (Fig. 1). All pictures were black

Emotional ERPs in Epilepsy with Negative Affect

PLOS ONE | DOI:10.1371/journal.pone.0116817 January 14, 2015 3 / 16



and white photographs presented on a gray background and had the same size across all
experiments (108 [width] × 154 [height] pixels on a 1024 � 768 resolution screen) subtending
4.0 × 5.7° of visual angle at a 50 cm viewing distance. The stimuli included 10 fearful faces,
10 neutral faces, 10 sad faces and 20 houses, with pictures from each category repeated equally
across all trials. The neutral, fearful and sad facial expression photographs were drawn from
the set of Ekman and Friesen [40].

4 Procedure
The face- or house-matching task was adapted from previous studies [19]. Stimulus presenta-
tion and response time recording were controlled using E-Prime software 2.0 (Psychology Soft-
ware Tools Inc., Pittsburgh, USA). Before each block, a 3 s display instructed subjects to attend
to horizontal or vertical stimulus pairs, while ignoring the other stimulus pairs. The instruction
display consisted of four empty frames placed at the location of the stimuli, with either the two
horizontal or the two vertical frames being thickened. Trials began with a central fixation cross

Table 1. Demographic data for each group of participants.

Patients with negative affect Patients without negative affect Controls Statistics
(n = 25) (n = 25) (n = 25)

BDI 23.6 (�9.4) 5.0 (�3.5) 3.6 (�3.0) p<0.001

Age (years) 33.7 (�10.0) 35.7 (�10.9) 37.0 (�11.9) p = 0.502

Sex (M/F) 16 / 9 10 / 15 14 / 11 p = 0.156

Education (years) 13.1 (�1.5) 13.6 (�1.7) 14.6 (�1.5) p = 0.292

HEZ: side NA p = 0.683

Right 9 12

Left 15 12

Bilateral 1 1

HEZ: lobe NA p = 0.232

Frontal 10 5

Temporal 11 17

Fronto-temporal 1 2

Parietal/Occipital 3 1

3T MRI NA p = 0.733

Normal 6 5

Abnormalities 19 20

• Frontal 7 8

• Temporal 10 12

� Medial temporal 9 10

• Parietal/Occipital 3 2

Epilepsy duration (years) 11.7 (�9.5) 18.9 (�10.8) 0 p = 0.016

Seizure frequency (/month) 11.9 (�12.2) 11.1 (�13.0) 0 p = 0.825

Number of AEDs (/day) 2.4 (�0.8) 2.9 (�0.9) 0 p = 0.074

AEDs total dose (mg/day) 2474.8 (�1416.1) 2631.6 (�1773.7) 0 p = 0.731

ADDs total dose (mg/day) 27.7 (�67.2) 0 0 p = 0.045

STAI State 46.3 (�10.4) 34.8 (�8.1) 28.0 (�4.9) p<0.001

STAI Trait 52.3 (�8.3) 35.8 (�7.9) 34.6 (�7.5) p<0.001

Values represent means (� 1 standard deviation) or numbers.

Abbreviations: BDI Beck Depression Inventory, M male, F female, HEZ hypothesized epileptogenic zone; 3T MRI 3 tesla magnetic resonance imaging,

AEDs antiepileptic drugs; ADDs antidepressant drugs, STAI state-trait anxiety inventory.

doi:10.1371/journal.pone.0116817.t001
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for 1 s, followed by the four-picture display for 300 ms. Subjects were asked to maintain fixa-
tion centrally throughout the trials and attend covertly to the stimulus pair at the relevant loca-
tions, in order to judge whether these two stimuli were the same or different by pressing one
out of two keys. The inter-trial interval (ITI) varied randomly between 1 and 3 s. All partici-
pants completed 10 practice trials and 4 blocks of 48 trials, with two blocks where the attention
was directed to horizontal positions and two blocks where the attention was directed to vertical
positions. In each block, all possible combinations of two object categories (faces vs. houses),
their locations, same/different identity, and facial expression were fully randomized and coun-
terbalanced across trials, resulting in a total of 32 neutral, 32 sad and 32 fearful faces at task-
relevant locations, and the same number for each expression at task-irrelevant locations (total
192 trials). Instructions emphasized both accuracy and speed. Response times were recorded
from stimulus onset. Trials were excluded when there was no response within 2 seconds.

5 EEG recording
The electroencephalogram (EEG) was recorded with Micromed System Plus (Micromed,
Mogliano Veneto, Italy) using gold electrodes placed at 27 standard locations from the extend-
ed international 10–20 system (Fp1, Fpz, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz,
P4, T6, O1, Oz, O2, T9, TP9, FT9, T10, TP10 and FT10). The online reference electrode was
placed on the right mastoid and ground electrode on the left mastoid. The electrocardiogram
(ECG) was recorded with two ECG electrodes placed above the heart. The EEG and ECG sig-
nals were digitized online with a sampling frequency rate of 1024 Hz, anti-aliasing filter of
250 Hz, gain of 50 dB and 16 bits resolution. Electrode impedance was maintained below
10 kO.

6 ERP analysis
ERPs of interest were computed offline following a standard sequence of data transformations
[41]. All offline ERP analyses were performed using BrainVision Analyzer 2 software (Brain
Products GmbH, Gilching, Germany). The EEG was corrected for vertical and horizontal eye
movements, blinks and ECG artifacts with an independent component analysis (ICA) that sub-
tracts these artifact components from each electrode. The raw EEG was first decomposed into

Figure 1. Sample visual stimuli of the face- or house-matching task. Each trial comprised a display of four pictures, with two houses and two faces
arranged in vertical and horizontal pairs around a central black fixation cross. Before each block, a visual cue (i.e., thickening of two frames) instructed
participants to attend either to the vertical pair or the horizontal pair of stimuli, while ignoring the other pair. Subjects had to indicate quickly and accurately
whether the two stimuli at the task-relevant locations were the same or different (i.e., matching task). On any given trial, both faces had either a fearful, sad or
neutral expression and were shown at task-relevant or task-irrelevant locations. The neutral, fearful and sad facial expression photographs were drawn from
the set of Ekman and Friesen [40].

doi:10.1371/journal.pone.0116817.g001
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ICA components using the restricted infomax algorithm. Then the three components related
to eye-movements, blinks and ECG artifacts were selected by visual inspection, relying on both
the time course and the spatial maps of the components herewith generated. These compo-
nents were removed and the remaining ICA components were projected back using an inverse
ICA to reconstruct the artifact-free EEG. The EEG signal was then re-referenced to the average
of all 27 recorded channels. The continuous EEG was first digitally filtered with a 50 Hz notch
filter and a half-power band-pass filter between 0.1–30 Hz with a roll-off of 12 dB/octave. The
EEG was segmented into epochs from −200 ms to +1000 ms relative to the onset of the stimuli.
Baseline correction was performed on the 200 ms pre-stimulus interval and epochs with volt-
age exceeding �75 µV were excluded from averaging. The average fraction of rejected epochs
was 4.7% in the group of patients with negative affect, 4.1% in the group of patients without
negative affect and 5.4% in the control group (one-way ANOVA F = 0.2, p = 0.8). Artifact free
epochs were averaged separately for each condition and each individual. The grand average
ERPs were generated by computing mean ERPs across subjects, for each condition separately.
The effects of attention and emotion on sensory processing were analyzed by focusing on two
well-documented ERP components: the vertex positive potential (VPP) and the late positive
potential (LPP). The VPP was detected automatically as the maximum positive amplitude in
the 140–210 ms interval post-stimulus onset at the central midline Cz [27]. The VPP amplitude
was calculated as the mean amplitude of the 20 ms interval around this peak. The N170 mea-
surements were made on lateral temporal-occipital electrode sites T5 and T6 using the same
time window [17, 27]. The LPP amplitude was measured as the average amplitude of the
350–600 ms interval post-stimulus onset at parietal midline electrode Pz [29, 34]. Repeated
measures analysis of variance (ANOVA) was used with a 2-tailed alpha level of 0.05 for all
statistical tests. When assumptions of sphericity were violated (Mauchly’s sphericity test,
p< 0.05), Greenhouse—Geisser epsilon correction was applied. The analyses of the ERP mea-
sures included a between-subjects factor of group (with negative affect vs. without negative af-
fect vs. control) and a within-subjects factor of attention (task-relevant vs. task-irrelevant) and
emotion (neutral vs. sad vs. fear). Post-hoc tests of simple effects were adjusted with the Bon-
ferroni correction for multiple comparisons. In order to control for possible confounding fac-
tors of damage to the medial temporal lobe, frontal lobe and antidepressant dose, separate
ANOVA’s were performed with these factors entered as covariates. Correlation between the
LPP amplitude differences and antidepressant dosing were tested using 2-tailed Pearson’s cor-
relation coefficient.

Results

1 Clinical data
Differences in clinical parameters between epileptic patients with negative affect and without
negative affect were assessed with unpaired t-test for continuous variables and Pearson chi-
square test for categorical variables. There were no significant differences in age [t(48) = 0.7,
p = 0.5], sex [Χ2 = 2.9, p = 0.1], years of education [t(48) = 1.1, p = 0.3], side of the hypothesized
epileptogenic zone (HEZ) [Χ2 = 1.1, p = 0.3], lobe of the HEZ [Χ2 = 4.3, p = 0.2], 3T MRI ab-
normalities [Χ2 = 0.1, p = 0.7], damage to medial temporal lobe [Χ2 = 0.1, p = 0.8], seizure fre-
quency [t(48) = 0.2, p = 0.8], number AEDs [t(48) = 1.8, p = 0.1] and AEDs dose [t(48) = 0.3,
p = 0.7]. Duration of epilepsy was significantly higher in the group of patients without than
with negative affect [t(48) = 2.5, p = 0.02]. Accordingly, longer duration of epilepsy was not as-
sociated with increased negative affect. As expected, the mean BDI score was significantly
higher in the group with negative affect (23.6�9.4) than the group without negative affect
(5.0�3.5) [t(48) = 9.2, p<0.001]. The STAI-S and STAI-T scores were also significantly higher
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in the group with than without negative affect [STAI-S: t(48) = 4.3, p<0.001, STAI-T: t(48) =
7.2, p<0.001]. Correlation analysis using a 2-tailed Pearson coefficient showed significant
positive correlations of the BDI scores with the STAI-S (r = 0.73, p<0.001) and the STAI-T
(r = 0.81, p<0.001) scores.

2 Behavioral results
Mean response times and accuracy in same/different judgments, performed during continuous
video-EEG monitoring, were computed for each subject in each of the six conditions. Behavior-
al results are summarized in Fig. 2. To examine data, mixed model ANOVA was performed
with group as between-subject factor (control vs. patients with negative affect vs. patients with-
out negative affect) and two within-subject factors: attention (faces vs. houses) and emotional
expression (fearful vs. neutral vs. sad).

Mean error rate was 25% indicating that the matching task was relatively demanding. A sig-
nificant group-related effect was found for accuracy: epileptic patients with negative affect
made most errors (35%), epileptic patients without negative affect made 25% errors, while con-
trol subject had an error-rate of 18% [main effect of group F(2,72) = 10.4, p<0.001]. Subjects
made more errors overall when judging faces (30%) than houses (19%) [main effect of atten-
tion F(1,72) = 103.2, p< 0.001]. Participants had lower accuracy when the faces carried a fear-
ful or sad emotional expression [main effect of emotion F(2,72) = 4.2, p = 0.017]. Subjects
made significantly more errors when the negative emotional faces were task-relevant [interac-
tion attention�emotion F(2,72) = 7.2, p = 0.001]. Post-hoc analysis with Bonferroni correction
revealed higher error rates for relevant sad [p<0.001] and fearful faces [p = 0.031] relative to
neutral faces. All other comparisons were not significant. There was no significant interaction
of attention or emotion with group [interaction attention�group F(2,72) = 0.3, p = 0.8, interac-
tion emotion�group F(2,72) = 1.3, p = 0.3, interaction emotion�attention�group F(4,72) = 0.3,
p = 0.9].

Analysis of reaction times (RTs) showed a mean RT of 639 ms, that was not significantly
different between groups [main effect of group F(2,72) = 0.8, p = 0.4]. Participants were signifi-
cantly slower to make same/different judgments with faces (672 ms) compared to houses

Figure 2. Behavioral results. Percentage errors (upper panels) and reaction time in ms (lower panels) in response to faces (black bars) and houses (grey
bars), displayed separately for each group: control (left panel), patients with epilepsy without negative affect (middle) and with comorbid negative affect
(right). All three groups made more errors and had slower reaction times when attended faces carried a fearful or sad emotional expression, relative to a
neutral expression.

doi:10.1371/journal.pone.0116817.g002
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(606 ms) [main effect of attention F(1,72) = 44.2, p<0.001]. In addition, we found a significant
interaction of group with attention [F(2,72) = 4.1, p = 0.02]. In the control group there was a
larger difference in RT when comparing houses (mean 554 ms) than faces (mean 659 ms)
[p<0.001] than in the other two groups. RTs were significantly slower for emotional compared
to neutral faces [main effect of emotion F(2,72) = 4.3, p = 0.019]. RT analysis revealed a signifi-
cant interaction of attention and emotion: all subjects showed significantly slower reaction
times in displays in which task-relevant faces had a fearful (681 ms) or sad (683 ms) compared
to neutral (651 ms) expression [interaction attention�emotion F(2,72) = 6.7, p = 0.002]. Post-
hoc analysis with Bonferroni correction revealed slower reaction times for task-relevant sad
[p = 0.002] and fearful faces [p = 0.004] relative to neutral faces. All other comparisons were
not significant. However, there was no significant interaction of group with emotion [interac-
tion emotion�group F(2,72) = 0.6, p = 0.6; interaction emotion�attention�group F(4,72) = 0.6,
p = 0.7].

3 Electrophysiological results
3.1 VPP/N170. All groups had a large face-sensitive VPP component at central midline elec-
trode Cz (Fig. 3). The amplitude of the VPP was significantly larger on trials in which attention
was focused on the face pairs relative to trials during which faces were presented outside the at-
tention focus [main effect of attention F(1,72) = 13.0, p<0.001]. Noteworthy, there was no sig-
nificant effect of group or interaction group�attention on the amplitude of the face-sensitive
VPP component, indicating that the processing of the face stimuli was normal and preserved
in all groups [main effect of group F(2,72) = 2.2, p = 0.1, interaction group�attention F(2,72) =
0.8, p = 0.4]. The effect of emotion or any interaction with this factor did not reach significance
[F(2,72)�1.6, p�0.2].

Figure 3. Stimulus-locked grand average ERP waveforms.Grand average ERP waveforms recorded from central midline electrode Cz (upper panels)
and parietal midline electrode Pz (lower panels) in response to faces (red lines) and houses (blue lines), displayed separately for each group: control (left
panel), patients with epilepsy without negative affect (middle) and with comorbid negative affect (right). In the three groups alike, the amplitude of the VPP
and LPP components was significantly larger for face-cued relative to house-cued trials.

doi:10.1371/journal.pone.0116817.g003
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The N170 is suggested to be the negative counterpart of the positive VPP, because both
components are temporally coincident and have a high functional sensitivity for faces [27].
This is confirmed by our ERP results showing very similar effects of attention for the VPP and
N170 components. The amplitude of the N170 at the T5 and T6 electrodes was significantly
larger when faces were attended compared to when houses were attended [main effect of atten-
tion F(1,72) = 5.4, p = 0.023 at T5 electrode and F(1,72) = 22.1, p<0.001 at T6 electrode]. How-
ever, not all subjects showed a clear N170 component, because there were more artifacts and
noise at the lateral T5 and T6 electrodes than at the central midline electrode Cz. Therefore, we
focus on the VPP component in this study.

3.2 LPP. The emotion-sensitive LPP component was analyzed at the parietal midline elec-
trode Pz from 350 to 600 ms post stimulus (Fig. 4). There were no significant differences be-
tween groups on the mean amplitude of the LPP [main effect of group F(2,72) = 1.7, p = 0.2].
In all subjects the amplitude of the LPP component was enhanced for displays in which faces
were task-relevant compared to displays in which houses were task-relevant [main effect of at-
tention F(1,72) = 49.7, p<0.001] (Fig. 3). In addition, we found a significant three-way interac-
tion of group with attention and emotion [F(4,72) = 3.0, p = 0.021]. For post-hoc analyses we
made pairwise comparisons with Bonferroni correction between the 3 emotional conditions
(fear vs. neutral vs. sad) within each attention condition (house vs. face) and within each
group. In total 18 comparisons were made (3 emotion � 2 attention conditions � 3 groups).
These analyses revealed that only in patients with negative affect the LPP component was sig-
nificantly increased in response to task-irrelevant sad [p = 0.026] and fearful faces [p = 0.003]
relative to task-irrelevant neutral faces. All other comparisons were not significant.

Correlation between the differences of the LPP amplitudes between unattended emotional
and neutral faces and BDI and STAI scores were tested using 2-tailed Pearson’s correlation

Figure 4. LPP results.Grand average ERP waveforms recorded from parietal midline electrode Pz in responses to task-relevant faces (upper panels) and
houses (lower panels), displayed separately for each group: control (left), patients with epilepsy without negative affect (middle) and with comorbid negative
affect (right). Note that only in the group of epileptic patients with negative affect, when the emotion was task-irrelevant, the amplitude of the LPP was
significantly larger for sad and fearful expressions compared to neutral faces.

doi:10.1371/journal.pone.0116817.g004

Emotional ERPs in Epilepsy with Negative Affect

PLOS ONE | DOI:10.1371/journal.pone.0116817 January 14, 2015 9 / 16



coefficients. There were significant positive correlations found between the LPP amplitude dif-
ferences between unattended fearful and neutral faces and the BDI (r = 0.34, p = 0.014) as well
as the STAI (r = 0.29, p = 0.038). No such significant correlations were found between the LPP
amplitude differences between unattended sad and neutral faces and either the BDI (r = 0.20,
p = 0.155) or the STAI (r = 0.14, p = 0.335).

The type and location of the lesions in each group turned out to be very heterogeneous (S1
Table). Most common lesions were hippocampal sclerosis, focal cortical dysplasia, cysts and
cavernomas. Only one patient had a brain tumor, which was located in the left posterior hippo-
campus and suspected to be a low-grade glioma. This patient was part of the group of patients
with epilepsy without negative affect. In order to examine whether damage to the medial tem-
poral lobe has an influence on the emotion modulation of the LPP, all patients with epilepsy,
regardless of negative affect, were subdivided into two groups: one group where the 3T MRI
showed clear damage to the medial temporal lobe (n = 19) and one group without damage to
the medial temporal lobe (n = 31). Noteworthy, repeated-measures ANOVA showed no signif-
icant main effect of medial temporal lobe damage on the LPP amplitude [F(1,48) = 1.3, p = 0.3]
and there were no significant interactions with other factors. In addition, a separate analysis
that examined the effect of damage to the frontal lobe showed neither significant main effect of
frontal lobe damage on LPP amplitude [F(1,48) = 0.4, p = 0.5] nor significant interactions with
other factors. These results suggest that damage to the medial temporal lobe or frontal lobe did
not account for the amplitude modulation of the LPP.

Another possible confounding factor is that some patients of the group with negative affect
took antidepressant drugs (ADDs) while none of the participants in the other two groups took
ADDs. However, there was no significant main effect of ADD dose on the LPP [F(1,23) = 0.02,
p = 0.9] and no significant interactions of the ADD dose with the other experimental factors
[attention�ADD dose F(1,23) = 3.1, p = 0.1; emotion�ADD dose F(2,23) = 1.8, p = 0.2; atten-
tion�emotion�ADD dose F(2,23) = 0.4, p = 0.7]. Moreover, a correlation analysis using a 2-
tailed Pearson coefficient failed to show a significant association between the ADD dose and
the amplitude difference between unattended fear faces compared to unattended neutral faces
[r = 0.10, p = 0.62] or unattended sad faces compared to unattended neutral faces [r = 0.14,
p = 0.50].

Discussion
This study provides novel neurophysiological findings on the processing of emotional stimuli
in patients with epilepsy with and without comorbid negative affect, when compared to a
group of matched healthy controls. At the behavioral level, all subjects made more errors and
had slower reaction times when attended faces carried a fearful or sad emotional expression,
relative to a neutral expression. These results suggest that negative emotional face expressions,
when attended, interfered with the matching task requiring the processing of the identity (as
opposed to emotional content) of the face stimuli. At the electrophysiological level, the face-
sensitive VPP had enhanced amplitude for attended faces compared to houses, equally so in all
three groups and regardless of the emotional content of the face stimulus. These ERP results in-
dicate that attention was directed to the correct stimulus category independently of the emo-
tional content of the face, and that this early structural encoding of faces was normal and
preserved in patients with epilepsy, regardless of negative affect. By contrast, the amplitude of
the LPP was significantly enhanced for negative emotional expressions when faces were unat-
tended, but only in patients with comorbid negative affect. The modulation of the LPP compo-
nent by unattended emotional stimuli during the late stages of stimulus processing suggests
that emotion regulation is disturbed in patients with epilepsy and comorbid negative affect.

Emotional ERPs in Epilepsy with Negative Affect

PLOS ONE | DOI:10.1371/journal.pone.0116817 January 14, 2015 10 / 16



Our behavioral results show that in all groups the attended negative emotional face expres-
sions decreased task performance, which resulted in lower accuracy and slower reaction times,
compared to attended neutral faces. These findings are in line with previous studies that have
reported interference effects created by negative emotional stimuli [16, 20, 42]. From an evolu-
tionary perspective, priority processing of emotional information facilitates adaptive behavior,
promoting survival and reproductive success [43–44]. The enhanced processing demands asso-
ciated with emotional stimuli leave limited resource capacities for performance during the task,
that requires to match the identity of the two attended visual stimuli [42, 45–46]. Accordingly,
these behavioral findings confirm that in all three groups, emotion interfered with task perfor-
mance when it was attended, although not explicitly task-relevant.

The results obtained for the VPP/N170 component reveal a clear gating effect, in the ex-
pected direction, of object-based attention mechanisms. All subjects showed enhanced ampli-
tudes of the VPP/N170 components for attended faces (regardless of their emotional content)
compared to attended houses. Our findings are in agreement with a previous ERP study using
the same task in healthy adult participants that reported similar increased amplitudes of the
N170 in response to attended faces [17]. Importantly, in our study, this object-based attention
effect was evidenced in all three groups alike; suggesting that neither epilepsy alone, nor epilep-
sy combined with negative affect actually impaired the normal and early structural encoding of
faces. According to previous ERP studies, [24–27], the VPP is the counterpart at the vertex of
the occipito-temporal N170 component and this dipolar activity reflects the earliest markers of
a reliable processing difference between faces and objects. Therefore, our new ERP findings
clearly show that this early categorization process is spared in epilepsy with or without negative
affect.

By contrast, at a later time point following stimulus onset than the VPP, we found evidence
for a modulatory effect of epilepsy with comorbid negative affect on the processing of these
complex stimuli. We found that in patients with epilepsy and comorbid negative affect the am-
plitude of the LPP was significantly modulated when the emotional faces were unattended. It
seems contradictory that emotional stimuli presented outside the focus of attention have a
stronger influence on the LPP than when the same stimuli are attended. This is in contrast with
many ERP studies that have shown that the LPP component has enhanced amplitudes for at-
tended negative emotional stimuli compared to neutral stimuli in healthy participants [29–35].
However, these studies had longer picture presentation time (�1 second) and the emotional
expression of the face was task relevant because participants had to rate pictures for arousal
and valence. Therefore, the task-relevant emotional content was probably much more strongly
processed, reflected by increased LPP amplitudes. In our study, the stimuli were presented very
briefly (300 ms) and the emotional expression was not explicitly relevant for the matching task.
This might explain why in healthy control group and the group of patients without negative af-
fect there was no significant modulation of the LPP by the emotional expression of the faces.
By contrast, the LPP was enhanced in patients with epilepsy and comorbid negative affect
when the emotional faces were unattended. It is probable that the negative affect triggers an au-
tomatic emotional processing or vigilance effect (reflected by increased amplitude of the LPP)
when negative stimuli are distracters. This could point to a deficit to inhibit distracting negative
emotional information, or conversely, to a better sensitivity to process them “covertly” outside
the focus of attention. Accordingly, our LPP results show that negative emotional distracters
have an influence on the late stages of stimulus processing in epilepsy patients with negative af-
fect. Hence, the deficit in these patients is a deficit during the late stages of emotion control,
during which they fail to ignore distracting emotional information, unlike the two other groups
where the late processing of visual stimuli is not influenced by emotional distracters at unat-
tended locations.
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A few limitations have to be pointed out. Firstly, we have not included an additional control
group of patients with negative affect but without epilepsy. More than 70% of mood disorders
in epilepsy are atypical and fail to meet any of the diagnostic criteria of the DSM-IV [1, 3].
Therefore, a group of patients with mood disorders would not fully control for the type of neg-
ative affect in epilepsy. Patients with major depressive disorder, for example, would have more
severe depression than the patients included in this study. As expected, epileptic patients with
negative affect were not only showing higher levels of depressive symptoms (BDI) than patients
without negative affect, but also higher levels of anxiety (STAI). This multicollinearity is not
surprising, but instead in line with previous studies that have identified comorbid anxiety
symptoms in 73% of patients with epilepsy and depression [7]. There is a substantial symptom
overlap and comorbidity between depression and anxiety and both disorders are characterized
by high levels of negative affect [47]. Accordingly, future ERP studies are needed in order to es-
tablish whether depression or rather anxiety lies at the root of the emotion regulation disorder
observed in our study at the level of the LPP. To the best of our knowledge, until now no ERP
studies have been published on the face- or house-matching task in patients with negative af-
fect. Studies on the VPP and LPP in mood and anxiety disorders during other tasks have
yielded mixed results, depending on the used paradigm, type of stimuli, stimulus presentation
time and study population. There is evidence for increased processing of negative emotional
stimuli soon after stimulus presentation, reflected by enhanced early ERPs like the VPP, fol-
lowed by avoidance of unpleasant stimuli at later processing stages, reflected by a reduced LPP
for aversive stimuli, both in patients with general anxiety disorder [48] and patients with major
depressive disorder [49]. In contrast, other studies have reported increased LPP for aversive
compared to neutral pictures among subjects with high negative affect [50–51]. Therefore, it
would be very interesting in future studies to compare ERP results during the face-or house-
matching task in different control groups of patients without epilepsy but with other types of
negative affect disorders, such as major depressive disorder, dysthymic disorder, bipolar disor-
der, general anxiety disorder, in order to evaluate whether this is a general effect found across
these negative affect disorders, or instead, whether it is specific for negative affect in epilepsy.

Secondly, the administration of antidepressant drugs (ADDs) in one group selectively but
not in the two others may have obscured our new ERP findings. However, if ADDs would in-
fluence the amplitude of the LPP, then we would expect to see a main effect, and not a complex
three-way interaction effect, as we report here. Moreover, when the ADD dose was added as a
covariate in the statistical analysis for the LPP, no significant contribution of this factor was
found. Furthermore, there was no significant correlation between the ADD dose on the one
hand and the LPP amplitude differences between unattended sad or fearful compared to unat-
tended neutral faces on the other hand. Taken together, it therefore appears very unlikely that
the condition-specific modulation of the LPP might be explained by exposure to antidepressant
medication.

Thirdly, we did not use eye tracking during the face- or house-matching task. However, par-
ticipants were asked to maintain central fixation and eye movements were discouraged and un-
likely with this specific demanding matching task, given the brief stimulus duration and task
requirements used. This was formally confirmed by previous studies with eye tracking during
the same task that demonstrated that saccades were very rare, with no major differences in eye
position associated with the experimental factors [15–16, 18–19]. In addition, an ICA was used
to correct for horizontal and vertical eye movements.

Fourthly, it is important to consider the type of lesions because specific lesions can cause
widespread reorganization of neural networks. For example, patients with left sided tumors
show signs of functional reorganization and employ a much broader bilateral network during
language processing than healthy controls [52]. However, in our study, only one patient had a
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brain tumor in the group of patients without negative affect. The type, size and location of le-
sions of the patients were very heterogeneous and therefore the groups for each lesion were too
small in size to compare at the statistical level the possible differential effect of each specific
type of underlying lesion on negative affect and ERP results. Notwithstanding this limitation,
we note that it may be possible that some of these lesions could have had a greater influence on
our ERP results than other ones, especially lesions located in regions that are presumably im-
portant for emotion control processes, like the frontal and medial temporal regions. Therefore,
we performed additional data analyses and grouped the patients based on the presence of either
frontal or medial temporal lobe structures lesions, but these analyses failed to show any signifi-
cant effect on the LPP amplitude. Hence, the abnormalities arising during the later stages of
emotion stimulus processing in patients with epilepsy and comorbid negative affect could not
be linked to damage in one specific lobe but are more likely the result from dysfunction in a
broad network for emotion control in which both cortical and subcortical structures interact
with each other [11–12].

Comorbid negative affect in patients with epilepsy has often been considered to be a conse-
quence or complication of the chronic seizure disorder. However, a fascinating bidirectional re-
lationship between epilepsy and depression has recently been demonstrated [10, 53]: not only
are patients with epilepsy at greater risk of developing a depressive disorder, but patients with
primary depressive disorders are at greater risk of developing epilepsy [53–54]. This suggests
that the pathogenic mechanisms may be strongly intertwined and the structural and functional
alterations from one disease are likely to trigger the other [8, 55]. Identification of these com-
mon underlying pathogenic mechanisms may shed new light on the neurobiological bases of
mood disorders and epilepsy. Our findings suggest comorbid negative affect in patients with
epilepsy may be due to impaired emotion regulation.

In conclusion, the face-sensitive VPP results indicate that early attention was allocated to
the correct stimulus category and that early stimulus processing was preserved in all patients
with epilepsy, regardless of negative affect. Conversely, the LPP results suggest that during later
stages of stimulus processing the emotion regulation is disturbed, but only in patients with epi-
lepsy and comorbid negative affect. These new neurophysiological findings shed light on the
complex interplay of epilepsy with negative affect during the processing of emotional visual sti-
muli and in turn might help to better understand the etiology and maintenance of mood disor-
ders in epilepsy.
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