202 research outputs found

    Usefulness of the ManageMed Screen (MMS) and the Screening for Self-Medication Safety Post Stroke (S5) for Assessing Medication Management Capacity for Clients Post-Stroke

    Get PDF
    Occupational therapists need to efficiently and accurately screen a client’s medication management capacity, especially for clients post-stroke. Most therapists are not aware of, nor do they utilize specific assessments for, medication management capacity. The purpose of this pilot study was to compare the results of the ManageMed Screen (MMS), the Screening for Self-Medication Safety Post Stroke (S5), and the Montreal Assessment of Cognition (MoCA) on a population of rehabilitation clients post-stroke to determine the usefulness of the medication assessment tools in clinical practice. These screens were designed for use in occupational therapy practice among other healthcare professions: the MMS was validated for the general adult population, the S5 for clients post-stroke, and the MoCA is a cognitive screen used with adult clients with a variety of diagnoses including stroke. The MoCA was used to explore the potential relationship between cognition and medication management capacity. Study participants included five clients post-stroke and three occupational therapists. Clients were screened by the occupational therapists with the MMS, S5, and MoCA, and clinicians also participated in a focus group to assess their perceived usefulness of the screens. Results demonstrated that the MMS score compared to the S5 score was not statistically significant (r=.671, p=.215). There is no established consistency between the MoCA and MMS given these five clients. The MMS score was correlated to the MoCA score and was not found to be significant at a value of .205 with p=.741. The S5 score was also correlated to the MoCA score using SPSS and was found to have a non-significant value of -.287 and p=.640. Additionally, through a focus group, clinicians deemed both the MMS and S5 as useful, but felt the MMS was a more useful screen for their clinical practice with regard to efficient and practical use with clients post-stroke in a rehabilitation setting

    Research Mentoring and Scientist Identity: Insights from Undergraduates and their Mentors

    Full text link
    Background Mentored research apprenticeships are a common feature of academic outreach programs that aim to promote diversity in science fields. The current study tests for links between three forms of mentoring (instrumental, socioemotional, and negative) and the degree to which undergraduates psychologically identify with science. Participants were 66 undergraduate-mentor dyads who worked together in a research apprenticeship. The undergraduate sample was predominantly composed of women, first-generation college students, and members of ethnic groups that are historically underrepresented in science. Results Findings illustrated that undergraduates who reported receiving more instrumental and socioemotional mentoring were higher in scientist identity. Further, mentors who reported engaging in higher levels of negative mentoring had undergraduates with lower scientist identity. Qualitative data from undergraduates’ mentors provided deeper insight into their motivation to become mentors and how they reason about conflict in their mentoring relationships. Conclusions Discussion highlights theoretical implications and details several methodological recommendations

    Realfast: Real-Time, Commensal Fast Transient Surveys with the Very Large Array

    Full text link
    Radio interferometers have the ability to precisely localize and better characterize the properties of sources. This ability is having a powerful impact on the study of fast radio transients, where a few milliseconds of data is enough to pinpoint a source at cosmological distances. However, recording interferometric data at millisecond cadence produces a terabyte-per-hour data stream that strains networks, computing systems, and archives. This challenge mirrors that of other domains of science, where the science scope is limited by the computational architecture as much as the physical processes at play. Here, we present a solution to this problem in the context of radio transients: realfast, a commensal, fast transient search system at the Jansky Very Large Array. Realfast uses a novel architecture to distribute fast-sampled interferometric data to a 32-node, 64-GPU cluster for real-time imaging and transient detection. By detecting transients in situ, we can trigger the recording of data for those rare, brief instants when the event occurs and reduce the recorded data volume by a factor of 1000. This makes it possible to commensally search a data stream that would otherwise be impossible to record. This system will search for millisecond transients in more than 1000 hours of data per year, potentially localizing several Fast Radio Bursts, pulsars, and other sources of impulsive radio emission. We describe the science scope for realfast, the system design, expected outcomes, and ways real-time analysis can help in other fields of astrophysics.Comment: Accepted to ApJS Special Issue on Data; 11 pages, 4 figure

    Hydrogen Epoch of Reionization Array (HERA)

    Get PDF
    The Hydrogen Epoch of Reionization Array (HERA) is a staged experiment to measure 21 cm emission from the primordial intergalactic medium (IGM) throughout cosmic reionization (z=6−12z=6-12), and to explore earlier epochs of our Cosmic Dawn (z∼30z\sim30). During these epochs, early stars and black holes heated and ionized the IGM, introducing fluctuations in 21 cm emission. HERA is designed to characterize the evolution of the 21 cm power spectrum to constrain the timing and morphology of reionization, the properties of the first galaxies, the evolution of large-scale structure, and the early sources of heating. The full HERA instrument will be a 350-element interferometer in South Africa consisting of 14-m parabolic dishes observing from 50 to 250 MHz. Currently, 19 dishes have been deployed on site and the next 18 are under construction. HERA has been designated as an SKA Precursor instrument. In this paper, we summarize HERA's scientific context and provide forecasts for its key science results. After reviewing the current state of the art in foreground mitigation, we use the delay-spectrum technique to motivate high-level performance requirements for the HERA instrument. Next, we present the HERA instrument design, along with the subsystem specifications that ensure that HERA meets its performance requirements. Finally, we summarize the schedule and status of the project. We conclude by suggesting that, given the realities of foreground contamination, current-generation 21 cm instruments are approaching their sensitivity limits. HERA is designed to bring both the sensitivity and the precision to deliver its primary science on the basis of proven foreground filtering techniques, while developing new subtraction techniques to unlock new capabilities. The result will be a major step toward realizing the widely recognized scientific potential of 21 cm cosmology.Comment: 26 pages, 24 figures, 2 table

    Phase II study of two dose schedules of C.E.R.A. (Continuous Erythropoietin Receptor Activator) in anemic patients with advanced non-small cell lung cancer (NSCLC) receiving chemotherapy

    Get PDF
    BACKGROUND: C.E.R.A. (Continuous Erythropoietin Receptor Activator) is an innovative agent with unique erythropoietin receptor activity and prolonged half-life. This study evaluated C.E.R.A. once weekly (QW) or once every 3 weeks (Q3W) in patients with anemia and advanced non-small cell lung cancer (NSCLC) receiving chemotherapy. METHODS: In this Phase II, randomized, open-label, multicenter, dose-finding study, patients (n = 218) with Stage IIIB or IV NSCLC and hemoglobin (Hb) ≤ 11 g/dL were randomized to one of six treatment groups of C.E.R.A. administered subcutaneously for 12 weeks: 0.7, 1.4, or 2.1 μg/kg QW or 2.1, 4.2, or 6.3 μg/kg Q3W. Primary endpoint was average Hb level between baseline and end of initial treatment (defined as last Hb measurement before dose reduction or transfusion, or the value at week 13). Hematopoietic response (Hb increase ≥ 2 g/dL or achievement of Hb ≥ 12 g/dL with no blood transfusion in the previous 28 days determined in two consecutive measurements within a 10-day interval) was also measured. RESULTS: Dose-dependent Hb increases were observed, although the magnitude of increase was moderate. Hematopoietic response rate was also dose dependent, achieved by 51% and 62% of patients in the 4.2 and 6.3 μg/kg Q3W groups, and 63% of the 2.1 μg/kg QW group. In the Q3W group, the proportion of early responders (defined as ≥ 1 g/dL increase in Hb from baseline during the first 22 days) increased with increasing C.E.R.A. dose, reaching 41% with the highest dose. In the 6.3 μg/kg Q3W group, 15% of patients received blood transfusion. There was an inclination for higher mean Hb increases and lower transfusion use in the Q3W groups than in the QW groups. C.E.R.A. was generally well tolerated. CONCLUSION: C.E.R.A. administered QW or Q3W showed clinical activity and safety in patients with NSCLC. There were dose-dependent increases in Hb responses. C.E.R.A. appeared to be more effective when the same dose over time was given Q3W than QW, with a suggestion that C.E.R.A. 6.3 μg/kg Q3W provided best efficacy in this study. However, further dose-finding studies using higher doses are required to determine the optimal C.E.R.A. dose regimen in cancer patients receiving chemotherapy

    Optimizing sparse RFI prediction using deep learning

    Get PDF
    Radio frequency interference (RFI) is an ever-present limiting factor among radio telescopes even in the most remote observing locations. When looking to retain the maximum amount of sensitivity and reduce contamination for Epoch of Reionization studies, the identification and removal of RFI is especially important. In addition to improved RFI identification, we must also take into account computational efficiency of the RFI-Identification algorithm as radio interferometer arrays such as the Hydrogen Epoch of Reionization Array (HERA) grow larger in number of receivers. To address this, we present a deep fully convolutional neural network (DFCN) that is comprehensive in its use of interferometric data, where both amplitude and phase information are used jointly for identifying RFI. We train the network using simulated HERA visibilities containing mock RFI, yielding a known \u2018ground truth\u2019 data set for evaluating the accuracy of various RFI algorithms. Evaluation of the DFCN model is performed on observations from the 67 dish build-out, HERA-67, and achieves a data throughput of 1.6 7 105 HERA time-ordered 1024 channelled visibilities per hour per GPU. We determine that relative to an amplitude only network including visibility phase adds important adjacent time\u2013frequency context which increases discrimination between RFI and non-RFI. The inclusion of phase when predicting achieves a recall of 0.81, precision of 0.58, and F2 score of 0.75 as applied to our HERA-67 observations

    Measuring HERA's Primary Beam in Situ: Methodology and First Results

    Get PDF
    The central challenge in 21 cm cosmology is isolating the cosmological signal from bright foregrounds. Many separation techniques rely on the accurate knowledge of the sky and the instrumental response, including the antenna primary beam. For drift-scan telescopes, such as the Hydrogen Epoch of Reionization Array (HERA), that do not move, primary beam characterization is particularly challenging because standard beam-calibration routines do not apply (Cornwell et al.) and current techniques require accurate source catalogs at the telescope resolution. We present an extension of the method from Pober et al. where they use beam symmetries to create a network of overlapping source tracks that break the degeneracy between source flux density and beam response and allow their simultaneous estimation. We fit the beam response of our instrument using early HERA observations and find that our results agree well with electromagnetic simulations down to a -20 dB level in power relative to peak gain for sources with high signal-to-noise ratio. In addition, we construct a source catalog with 90 sources down to a flux density of 1.4 Jy at 151 MHz.The central challenge in 21 cm cosmology is isolating the cosmological signal from bright foregrounds. Many separation techniques rely on the accurate knowledge of the sky and the instrumental response, including the antenna primary beam. For drift-scan telescopes, such as the Hydrogen Epoch of Reionization Array (HERA), that do not move, primary beam characterization is particularly challenging because standard beam-calibration routines do not apply (Cornwell et al.) and current techniques require accurate source catalogs at the telescope resolution. We present an extension of the method from Pober et al. where they use beam symmetries to create a network of overlapping source tracks that break the degeneracy between source flux density and beam response and allow their simultaneous estimation. We fit the beam response of our instrument using early HERA observations and find that our results agree well with electromagnetic simulations down to a -20 dB level in power relative to peak gain for sources with high signal-to-noise ratio. In addition, we construct a source catalog with 90 sources down to a flux density of 1.4 Jy at 151 MHz

    Methods of Error Estimation for Delay Power Spectra in 21 cm Cosmology

    Get PDF
    Precise measurements of the 21 cm power spectrum are crucial for understanding the physical processes of hydrogen reionization. Currently, this probe is being pursued by low-frequency radio interferometer arrays. As these experiments come closer to making a first detection of the signal, error estimation will play an increasingly important role in setting robust measurements. Using the delay power spectrum approach, we have produced a critical examination of different ways that one can estimate error bars on the power spectrum. We do this through a synthesis of analytic work, simulations of toy models, and tests on small amounts of real data. We find that, although computed independently, the different error bar methodologies are in good agreement with each other in the noise-dominated regime of the power spectrum. For our preferred methodology, the predicted probability distribution function is consistent with the empirical noise power distributions from both simulated and real data. This diagnosis is mainly in support of the forthcoming HERA upper limit and also is expected to be more generally applicable

    A Real Time Processing system for big data in astronomy: Applications to HERA

    Get PDF
    As current- and next-generation astronomical instruments come online, they will generate an unprecedented deluge of data. Analyzing these data in real time presents unique conceptual and computational challenges, and their long-term storage and archiving is scientifically essential for generating reliable, reproducible results. We present here the real-time processing (RTP) system for the Hydrogen Epoch of Reionization Array (HERA), a radio interferometer endeavoring to provide the first detection of the highly redshifted 21 cm signal from Cosmic Dawn and the Epoch of Reionization by an interferometer. The RTP system consists of analysis routines run on raw data shortly after they are acquired, such as calibration and detection of radio-frequency interference (RFI) events. RTP works closely with the Librarian, the HERA data storage and transfer manager which automatically ingests data and transfers copies to other clusters for post-processing analysis. Both the RTP system and the Librarian are public and open source software, which allows for them to be modified for use in other scientific collaborations. When fully constructed, HERA is projected to generate over 50 terabytes (TB) of data each night, and the RTP system enables the successful scientific analysis of these data
    • …
    corecore