196 research outputs found

    Abnormal returns, risk, and financial statement data: The case of the Iraqi invasion of Kuwait

    Get PDF
    This paper examines abnormal returns and changes in risk for transportation firms immediately around the Iraqi invasion of Kuwait. Further, it tests whether the variation in the abnormal returns can be explained cross-sectionally with standard financial and industry-descriptive variables. The results indicate that transportation firms suffered a −2.09% abnormal return and increases in unsystematic risk. The cross sectional regression explains 31% of the variation in the abnormal returns, with firm size, liquidity, leverage, percentage of sales to the Department of Defense, and dummy variables denoting firms producing recreational vehicles or owning oil-producing subsidiaries contributing significantly to the regression

    From the surface to the seafloor: How giant larvaceans transport microplastics into the deep sea.

    Get PDF
    Plastic waste is a pervasive feature of marine environments, yet little is empirically known about the biological and physical processes that transport plastics through marine ecosystems. To address this need, we conducted in situ feeding studies of microplastic particles (10 to 600 μm in diameter) with the giant larvacean Bathochordaeus stygius. Larvaceans are abundant components of global zooplankton assemblages, regularly build mucus "houses" to filter particulate matter from the surrounding water, and later abandon these structures when clogged. By conducting in situ feeding experiments with remotely operated vehicles, we show that giant larvaceans are able to filter a range of microplastic particles from the water column, ingest, and then package microplastics into their fecal pellets. Microplastics also readily affix to their houses, which have been shown to sink quickly to the seafloor and deliver pulses of carbon to benthic ecosystems. Thus, giant larvaceans can contribute to the vertical flux of microplastics through the rapid sinking of fecal pellets and discarded houses. Larvaceans, and potentially other abundant pelagic filter feeders, may thus comprise a novel biological transport mechanism delivering microplastics from surface waters, through the water column, and to the seafloor. Our findings necessitate the development of tools and sampling methodologies to quantify concentrations and identify environmental microplastics throughout the water column

    Thalassioneis signyensis (bacillariophyceae) from northwest weddell sea icebergs, an emendation of the generic description

    Get PDF
    We offer an emended description of the genus Thalassioneis based on new observations of the type species, T. signyensis Round, from material sampled in the northwest Weddell Sea. Specimens from algal communities attached to submerged flanks of several icebergs were collected with a remote-operated vehicle (ROV-Phantom DS 2). The analyses were carried out by LM and SEM. Fresh material and frustules without organic matter allowed us to observe details not included in the original description such as type and structure of colonies and chloroplasts. The frustule shows an asymmetry with respect to the location of the apical pore fields, one of them situated on the valvar face and the other one displaced toward the mantle; the former is involved in joining contiguous cells to form long chains. Furthermore, we present details on the ultrastructure of the cingulum that consists of three to four open copulae with one or more rows of poroids. A brief discussion on the habit and ecology of this taxon, which may be endemic to the northwest Weddell Sea, is also presented. A comparison with similar genera, such as Brandinia, Creania, Fossula, Fragilaria, Rimoneis, Synedropsis, and Ulnaria, is included with an evaluation of morphological characteristics useful to differentiate them.Fil: Ferrario, Martha Elba. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Ficología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Cefarelli, Adrián Oscar. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Ficología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Robison, Bruce. Monterey Bay Aquarium Research Institute; Estados UnidosFil: Vernet, María. University of California at San Diego; Estados Unido

    Description and Relationships of Chaetopterus pugaporcinus, an Unusual Pelagic Polychaete (Annelida, Chaetopteridae)

    Get PDF
    An extraordinary new species, Chaetopterus pugaporcinus, is described from eight specimens collected from deep mesopelagic waters off Monterey Bay, California, by remotely operated vehicles. All specimens exhibit a consistent combination of both adult and larval characteristics, leaving in question the maturity of the specimens. All specimens lack ciliated larval bands and the stout, modified chaetae (cutting spines) typically found in segment A4 of chaetopterids. If the specimens described here are larvae, they are remarkable for their size, which ranged from 10 to 21 mm total length, nearly twice the length of the largest polychaete larvae previously reported and 5 to 10 times larger than known chaetopterid larvae. Then too, their lack of segment addition prior to settlement would be atypical. If adult, they are particularly unusual in their habitat choice and body form. Morphology of the uncini and comparison to larval morphology indicated a close relationship to either Chaetopterus or Mesochaetopterus. However, the lack of cutting spines and typical adult morphology made it impossible to determine to what genus this species should be allied. Thus, we carried out the first molecular phylogenetic analysis of the Chaetopteridae in order to appropriately place and name the new species. Three partial genes were sequenced for 21 annelid species. The sequencing also provides the first molecular evidence that Chaetopterus variopedatus sensu Hartman (1959) is not a single cosmopolitan species. The question of C. pugaporcinus being a delayed larva or a genuine holopelagic chaetopterid is discussed

    Preoperative thromboxane A2/prostaglandin H2 receptor activity predicts early graft thrombosis

    Get PDF
    AbstractPurpose: This study was carried out to determine whether early failure of infrainguinal bypass grafts is associated with increased expression of platelet thromboxane A2/prostaglandin H2 (TXA2/PGH2) receptors. A prospective correlation of preoperative platelet TXA2/PGH2 receptor-mediated activity with lower extremity graft patency was sought. Methods: Twenty-five patients who underwent infrainguinal bypass surgery for limb salvage were studied at an inpatient academic tertiary referral center and Department of Veterans Affairs Medical Center. Outcome measures were primary graft patency rate at 3 months, platelet TXA2/PGH2 receptor activity by equilibrium binding with 125I-BOP, and aggregation to the TXA2-mimetic U46619. Results: Preoperative platelet TXA2/PGH2 receptor density was higher (Bmax, 3100 ± 1300 vs 1500 ± 1100 sites/platelet [mean ± SD]; p = 0.004) in the five patients who had graft thrombosis within 3 months. The EC50 for U46619 was lower (26 ± 6 nmol/L vs 57 ± 30 nmol/L; p < 0.05) in these patients as well, confirming the functional effect of the increased receptor density. Early graft thrombosis was more likely in patients with a platelet TXA2/PGH2 receptor density greater than 3000 sites/platelet (odds ratio, 76; 95% confidence interval, 3.9 to 1500) or an EC50 for U46619 less than 30 nmol/L (odds ratio, 16; 95% confidence interval, 1.4 to 180). Conclusions: Elevated platelet TXA2/PGH2 receptor levels and enhanced sensitivity of platelet aggregation to TXA2 predict early arterial graft thrombosis. Specific TXA2/PGH2 receptor antagonism may prevent one of the mechanisms that contributes to early graft occlusion. (J Vasc Surg 1998;27:317-28.

    Prevalence of microplastics and anthropogenic debris within a deep-sea food web

    Get PDF
    Microplastic particles (\u3c5 mm) are ubiquitous throughout global marine ecosystems, including the deep sea. Ingestion of microplastics and other anthropogenic microparticles is reported in diverse marine taxa across trophic levels. Trophic transfer, or the movement of microplastics across trophic levels, is reported in laboratory studies but not yet widely measured in marine food webs. The Monterey Bay submarine canyon ecosystem contains a well-studied, known deep-sea food web in which to examine the trophic fate of microplastics. We measured microplastic abundance across 17 genera spanning approximately 5 trophic levels and a diversity of feeding behaviors. Samples were collected using remotely operated vehicles and oblique midwater trawls, and gut contents of all individuals examined (n = 157) were analyzed for microplastic abundance and other anthropogenic particles greater than 100 μm using stereo microscopy. Microparticles were analyzed with Raman spectroscopy to confirm material type. Anthropogenic particles were found in all genera examined, across crustacean, fish, mollusk, and gelatinous organisms, in amounts ranging from 0 to 24 particles per individual. There was no significant relationship between microplastic amount and fish trophic level, suggesting that the trophic transfer of microparticles is not occurring. Body size was positively correlated with microplastic abundance across all taxa. The fish genus Scomber sp. drove this relationship, suggesting higher microparticle abundance in mobile individuals with broad horizontal distributions. Future work should examine physiological pathways for microplastic transport within organisms (e.g. excretion, accumulation on gills, internal translocation of particles) and between organisms within shared habitats to more fully understand the fate of microplastics within aquatic food webs

    Vampire squid reproductive strategy is unique among coleoid cephalopods

    Get PDF
    Coleoid cephalopods are thought to go through only one reproductive cycle in their life. We here report that vampire squid (Vampyroteuthis infernalis) show evidence of multiple reproductive cycles. Female vampire squid spawn their eggs, then return to a resting reproductive state, which is followed by the development of a new batch of eggs. This reproductive cycle is likely to be repeated more than twenty times. This combination of reproductive traits is different from that of any other extant coleoid cephalopod
    • …
    corecore