13 research outputs found

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Na+/glucose cotransporter SGLT1 in the salivary glands of diabetic and hypertensive rats: role of sympathetic outflow and protein kinase A activity.

    No full text
    Disfunções em glândulas salivares são frequentes no diabetes e na hipertensão arterial. Glândulas salivares foram removidas para analisar o conteúdo das proteinas SGLT1 e PKA em ratos Wistar Kyoto (WKY), WKY diabéticos (WKY-D), espontaneamente hipertensos (SHR) e SHR diabéticos (SHR-D). A atividade simpática para as glândulas salivares também foi avaliada. A atividade simpática foi aumentada em SHR (P<0,001) comparado com WKY; e diminuída após a induçao do diabetes em WKY and SHR (P<0,05). A regulação da subunidade catalítica da PKA e da proteína SGLT1 em membrana plasmática foram paralelas com a atividade simpática. Em ratos diabéticos e/ou hipertensos, a análise da imunohistoquímica mostrou aumento da proteína SGLT1 na membrana luminal de células ductais, onde isto pode promover captação de água, reduzindo o fluxo salivar. Confirmando isso, a secreção salivar não-estimulada foi reduzida (P<0,001) em WKY-D, SHR e SHR-D. Os resultados mostram que o aumento da SGLT1 luminal foi inversamente proporcional com o fluxo salivar em ratos diabéticos e hipertensos. Isto indica o papel do transporte de água da SGLT1 e, pelo aumento da reabsorção de água, pode explicar a hiposalivação em indivíduos diabéticos e hipertensos.Salivary gland dysfunction is a feature in diabetes and hypertension. In Wistar Kyoto rats (WKY), diabetic WKY (WKY-D), spontaneously hypertensive rats (SHR) and diabetic SHR (SHR-D), salivary glands were harvested for SGLT1 and PKA protein expression analysis. Moreover, sympathetic nerve activity to the salivary glands was measured. Diabetes decreased the nerve activity in WKY and SHR (P<0.05), pointing out that it was higher in SHR, as compared to WKY (P<0.001). The regulation of catalytic subunit of PKA and plasma membrane SGLT1 protein were parallel to the sympathetic nerve activity. In diabetic and/or hypertensive rats, imunohistochemical analysis showed increased SGLT1 protein in luminal membrane of ductal cells, where it may promote water uptake, reducing the salivary flow. Confirming that, nonstimulated salivary secretion was reduced (P<0.001) in WKY-D, SHR and SHR-D rats. The results show in luminal membrane of ductal cells SGLT1 protein increased inversely proportional to the nonstimulated salivary flux in diabetic and hypertensive rats. This indicates the water transporter role of SGLT1 and, by increasing salivary water reabsorption, may explain the hyposalivation complained by diabetic subjects

    SARS-CoV-2 and Hypertension: Evidence Supporting Invasion into the Brain Via Baroreflex Circuitry and the Role of Imbalanced Renin-Angiotensin-Aldosterone-System

    No full text
    Hypertension is considered one of the most critical risk factors for COVID-19. Evidence suggests that SARS-CoV-2 infection produces intense effects on the cardiovascular system by weakening the wall of large vessels via vasa-vasorum. In this commentary, we propose that SARS-CoV-2 invades carotid and aortic baroreceptors, leading to infection of the nucleus tractus solitari (NTS) and paraventricular hypothalamic nucleus (PVN), and such dysregulation of NTS and PVN following infection causes blood pressure alteration at the central level. We additionally explored the hypothesis that SARS-CoV-2 favors the internalization of membrane ACE2 receptors generating an imbalance of the renin-angiotensin-aldosterone system (RAAS), increasing the activity of angiotensin II (ANG-II), disintegrin, and metalloproteinase 17 domain (ADAM17/TACE), eventually modulating the integration of afferents reaching the NTS from baroreceptors and promoting increased blood pressure. These mechanisms are related to the increased sympathetic activity, which leads to transient or permanent hypertension associated with SARS-CoV-2 invasion, contributing to the high number of deaths by cardiovascular implications

    Perspectives of FTIR as Promising Tool for Pathogen Diagnosis, Sanitary and Welfare Monitoring in Animal Experimentation Models: A Review Based on Pertinent Literature

    No full text
    Currently, there is a wide application in the literature of the use of the Fourier Transform Infrared Spectroscopy (FTIR) technique. This basic tool has also proven to be efficient for detecting molecules associated with hosts and pathogens in infections, as well as other molecules present in humans and animals’ biological samples. However, there is a crisis in science data reproducibility. This crisis can also be observed in data from experimental animal models (EAMs). When it comes to rodents, a major challenge is to carry out sanitary monitoring, which is currently expensive and requires a large volume of biological samples, generating ethical, legal, and psychological conflicts for professionals and researchers. We carried out a survey of data from the relevant literature on the use of this technique in different diagnostic protocols and combined the data with the aim of presenting the technique as a promising tool for use in EAM. Since FTIR can detect molecules associated with different diseases and has advantages such as the low volume of samples required, low cost, sustainability, and provides diagnostic tests with high specificity and sensitivity, we believe that the technique is highly promising for the sanitary and stress and the detection of molecules of interest of infectious or non-infectious origin

    Exploring the antifungal, antibiofilm and antienzymatic potential of Rottlerin in an in vitro and in vivo approach

    No full text
    Abstract Candida species have been responsible for a high number of invasive infections worldwide. In this sense, Rottlerin has demonstrated a wide range of pharmacological activities. Therefore, this study aimed to evaluate the antifungal, antibiofilm and antivirulence activity of Rottlerin in vitro against Candida spp. and its toxicity and antifungal activity in vivo. Rottlerin showed antifungal activity against all yeasts evaluated, presenting Minimum Inhibitory and Fungicidal Concentration (MIC and MFC) values of 7.81 to > 1000 µg/mL. Futhermore, it was able to significantly inhibit biofilm production, presenting Biofilm Inhibitory Concentration (MICB50) values that ranged from 15.62 to 250 µg/mL and inhibition of the cell viability of the biofilm by 50% (IC50) from 2.24 to 12.76 µg/mL. There was a considerable reduction in all hydrolytic enzymes evaluated, with emphasis on hemolysin where Rottlerin showed a reduction of up to 20%. In the scanning electron microscopy (SEM) analysis, Rottlerin was able to completely inhibit filamentation by C. albicans. Regarding in vivo tests, Rottlerin did not demonstrate toxicity at the therapeutic concentrations demonstrated here and was able to increase the survival of C. elegans larvae infected. The results herein presented are innovative and pioneering in terms of Rottlerin’s multipotentiality against these fungal infections

    Mannose-Binding Lectins as Potent Antivirals against SARS-CoV-2

    No full text
    The SARS-CoV-2 entry into host cells is mainly mediated by the interactions between the viral spike protein (S) and the ACE-2 cell receptor, which are highly glycosylated. Therefore, carbohydrate binding agents may represent potential candidates to abrogate virus infection. Here, we evaluated the in vitro anti-SARS-CoV-2 activity of two mannose-binding lectins isolated from the Brazilian plants Canavalia brasiliensis and Dioclea violacea (ConBR and DVL). These lectins inhibited SARS-CoV-2 Wuhan-Hu-1 strain and variants Gamma and Omicron infections, with selectivity indexes (SI) of 7, 1.7, and 6.5, respectively for ConBR; and 25, 16.8, and 22.3, for DVL. ConBR and DVL inhibited over 95% of the early stages of the viral infection, with strong virucidal effect, and also protected cells from infection and presented post-entry inhibition. The presence of mannose resulted in the complete lack of anti-SARS-CoV-2 activity by ConBR and DVL, recovering virus titers. ATR-FTIR, molecular docking, and dynamic simulation between SARS-CoV-2 S and either lectins indicated molecular interactions with predicted binding energies of −85.4 and −72.0 Kcal/Mol, respectively. Our findings show that ConBR and DVL lectins possess strong activities against SARS-CoV-2, potentially by interacting with glycans and blocking virus entry into cells, representing potential candidates for the development of novel antiviral drugs

    Monitoring of Peripheral Blood Leukocytes and Plasma Samples: A Pilot Study to Examine Treatment Response to Leflunomide in Rheumatoid Arthritis

    No full text
    Rheumatoid arthritis (RA) is a painful inflammatory disease of the joints which affects a considerable proportion of the world population, mostly women. If not adequately treated, RA patients can become permanently disabled. Importantly, not all the patients respond to the available anti-rheumatic therapies, which also present diverse side effects. In this context, monitoring of treatment response is pivotal to avoid unnecessary side effects and costs towards an ineffective therapy. Herein, we performed a pilot study to investigate the potential use of flow cytometry and attenuated total reflection–Fourier transform infrared (ATR-FTIR) spectroscopy as measures to identify responders and non-responders to leflunomide, a disease-modifying drug used in the treatment of RA patients. The evaluation of peripheral blood CD62L+ polymorphonuclear cell numbers and ATR-FTIR vibrational modes in plasma were able to discriminate responders to leflunomide (LFN) three-months after therapy has started. Overall, the results indicate that both flow cytometry and ATR-FTIR can potentially be employed as additional measures to monitor early treatment response to LFN in RA patients

    Planck 2013 results. XX. Cosmology from Sunyaev-Zeldovich cluster counts

    No full text
    We present constraints on cosmological parameters using number counts as a function of redshift for a sub-sample of 189 galaxy clusters from the Planck SZ (PSZ) catalogue. The PSZ is selected through the signature of the Sunyaev-Zeldovich (SZ) effect, and the sub-sample used here has a signal-to-noise threshold of seven, with each object confirmed as a cluster and all but one with a redshift estimate. We discuss the completeness of the sample and our construction of a likelihood analysis. Using a relation between mass M and SZ signal Y calibrated to X-ray measurements, we derive constraints on the power spectrum amplitude sigma8 and matter density parameter Omega_m in a flat Lambda CDM model. We test the robustness of our estimates and find that possible biases in the Y-M relation and the halo mass function are larger than the statistical uncertainties from the cluster sample. Assuming the X-ray determined mass to be biased low relative to the true mass by between zero and 30%, motivated by comparison of the observed mass scaling relations to those from a set of numerical simulations, we find that sigma8 = 0.75 \ub1 0.03, Omega_m = 0.29 \ub1 0.02, and sigma8(Omegam/ 0.27)0.3 = 0.764 \ub1 0.025. The value of sigma8 is degenerate with the mass bias; if the latter is fixed to a value of 20% (the central value from numerical simulations) we find sigma8(Omega_m/0.27)0.3 = 0.78 \ub1 0.01 and a tighter one-dimensional range sigma8 = 0.77 \ub1 0.02. We find that the larger values of sigma8 and Omegam preferred by Planck's measurements of the primary CMB anisotropies can be accommodated by a mass bias of about 40%. Alternatively, consistency with the primary CMB constraints can be achieved by inclusion of processes that suppress power on small scales relative to the LambdaCDM model, such as a component of massive neutrinos. We place our results in the context of other determinations of cosmological parameters, and discuss issues that need to be resolved in order to make further progress in this field
    corecore