48,473 research outputs found
Equations of motion in the linear approximation
Gauge invariant theory of motion of singularities in linear approximatio
User involvement in healthcare technology development and assessment: Structured literature review
Purpose – Medical device users are one of the principal stakeholders of medical device technologies. User involvement in medical device technology development and assessment is central to meet their needs.
Design/methodology/approach – A structured review of literature, published from 1980 to 2005 in peer-reviewed journals, was carried out from social science perspective to investigate the practice of user involvement in the development and assessment of medical device technologies. This was followed by qualitative thematic analysis.
Findings – It is found that users of medical devices include clinicians, patients, carers and others. Different kinds of medical devices are developed and assessed by user involvement. The user involvement occurs at different stages of the medical device technology lifecycle and the degree of user involvement is in the order of design stage > testing and trials stage > deployment stage > concept stage. Methods most commonly used for capturing users’ perspectives are usability tests, interviews and questionnaire surveys.
Research limitations/implications – We did not review the relevant literature published in engineering, medical and nursing fields, which might have been useful.
Practical implications – Consideration of the users’ characteristics and the context of medical device use is critical for developing and assessing medical device technologies from users’ perspectives.
Originality/value – This study shows that users of medical device technologies are not homogeneous but heterogeneous, in several aspects, and their needs, skills and working environments vary. This is important consideration for incorporating users’ perspectives in medical device technologies.
Paper type: Literature review
Electromagnetic vortex lines riding atop null solutions of the Maxwell equations
New method of introducing vortex lines of the electromagnetic field is
outlined. The vortex lines arise when a complex Riemann-Silberstein vector
is multiplied by a complex scalar function
. Such a multiplication may lead to new solutions of the Maxwell
equations only when the electromagnetic field is null, i.e. when both
relativistic invariants vanish. In general, zeroes of the function give
rise to electromagnetic vortices. The description of these vortices benefits
from the ideas of Penrose, Robinson and Trautman developed in general
relativity.Comment: NATO Workshop on Singular Optics 2003 To appear in Journal of Optics
Degeneracies when T=0 Two Body Interacting Matrix Elements are Set Equal to Zero : Talmi's method of calculating coefficients of fractional parentage to states forbidden by the Pauli principle
In a previous work we studied the effects of setting all two body T=0 matrix
elements to zero in shell model calculations for Ti (Sc) and
Ti. The results for Ti were surprisingly good despite the
severity of this approximation. In this approximation degeneracies arose in the
T=1/2 I= and states in Sc and the T=1/2
, , and in Sc. The T=0
, , , and states in Ti were degenerate as
well. The degeneracies can be explained by certain 6j symbols and 9j symbols
either vanishing or being equal as indeed they are. Previously we used Regge
symmetries of 6j symbols to explain these degeneracies. In this work a simpler
more physical method is used. This is Talmi's method of calculating
coefficients of fractional parentage for identical particles to states which
are forbidden by the Pauli principle. This is done for both one particle cfp to
handle 6j symbols and two particle cfp to handle 9j symbols. The states can be
classified by the dual quantum numbers ()
Intrinsic Variability and Field Statistics for the Vela Pulsar: 3. Two-Component Fits and Detailed Assessment of Stochastic Growth Theory
The variability of the Vela pulsar (PSR B0833-45) corresponds to well-defined
field statistics that vary with pulsar phase, ranging from Gaussian intensity
statistics off-pulse to approximately power-law statistics in a transition
region and then lognormal statistics on-pulse, excluding giant micropulses.
These data are analyzed here in terms of two superposed wave populations, using
a new calculation for the amplitude statistics of two vectorially-combined
transverse fields. Detailed analyses show that the approximately power-law and
lognormal distributions observed are fitted well at essentially all on-pulse
phases by Gaussian-lognormal and double-lognormal combinations, respectively.
These good fits, plus the smooth but significant variations in fit parameters
across the source, provide strong evidence that the approximately power-law
statistics observed in the transition region are not intrinsic. Instead, the
data are consistent with normal pulsar emission having lognormal statistics at
all phases. This is consistent with generation in an inhomogeneous source
obeying stochastic growth theory (SGT) and with the emission mechanism being
purely linear (either direct or indirect). A nonlinear mechanism is viable only
if it produces lognormal statistics when suitably ensemble-averaged. Variations
in the SGT fit parameters with phase imply that the radiation is relatively
more variable near the pulse edges than near the center, as found in earlier
work. In contrast, Vela's giant micropulses come from a very restricted phase
range and have power-law statistics with indices () not
inconsistent with nonlinear wave collapse. These results imply that normal
pulses have a different source and generation mechanism than giant micropulses,
as suggested previously on other grounds.Comment: 10 pages and 14 figures. Accepted by Monthly Notices of the Royal
Astronomical Society in April 200
Shear-Free Gravitational Waves in an Anisotropic Universe
We study gravitational waves propagating through an anisotropic Bianchi I
dust-filled universe (containing the Einstein-de-Sitter universe as a special
case). The waves are modeled as small perturbations of this background
cosmological model and we choose a family of null hypersurfaces in this
space-time to act as the histories of the wavefronts of the radiation. We find
that the perturbations we generate can describe pure gravitational radiation if
and only if the null hypersurfaces are shear-free. We calculate the
gauge-invariant small perturbations explicitly in this case. How these differ
from the corresponding perturbations when the background space-time is
isotropic is clearly exhibited.Comment: 32 pages, accepted for publication in Physical Review
Simple expert systems to improve an ultrasonic sensor-system for a tele-operated mobile-robot
- …
