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1. Introduction

There are some advantages in approaching the linear approximation to

General Relativity through the field rather than the potential: geometry

ends where gauge transformations begin.

This paper is a first step towards a gauge-invariant theory of the

motion of singularities. The principal results were reported by one of us

at the Haifa Seminar on Relativity and Gravitation in July 1969; and the

work was completed shortly after-ards. We have presented it elsewhere, but

never previously in writing.	 are happy indeed that this delinquency enables

us to dedicate it now to Professor J. L. Synge, whose elegant geometrical

approach to Relativity Theory has been the inspiration of several generations

of scientists.

2. Linear Approximation

If gab is a metric of.n--dimensional Riemannian space, the curvature

tensor

qr
Rabcd :MV gPq , rs + gkm[PQ,k][rs,m]}a ab acd '	

(2.1)

satisfies

Rabcd s R [cd][ab] - R [abcd],	 (2.2)

and

(2.3)

Let us now consider some of the consequences of these identities, with-

out taking account of the definition (2.1). The fourth rank tensor

tSo, at least, we supposed at the time; but Andrzej Trautman l pointed out a
significant gap. We have tried to fill it in Section 9.
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(2.4)

f

where

.R Pq	 .R	 Pq
Rab g Rapqb' Gab Rab_`g Rpqgab'

satisfies the algebraic identities (2.2), and has vanishing dii :!rg&nce,

abcd
G	 ^d = ©,

whence

Rabcd
;d M 0

in the Ricci-flat case,

Rab	 0.

All this holds in a dimensions. For n = 4, we introduce the duals,

*Rabcd ' `m knabpgR 
qP
 cd'

R*abcd 
In kR

ab Pqngpcd,

where nabcd is the Levi-Civita's totally antisymmetric tensor. The

double duals are given by

**Rabcd a
 R**	 -R

 a Rabcd,

*R*abcd 
a 
-Gabcd

It follows directly that in four dimensions, equation (2.6) is not

merely a consequence of Bianchi identities, but is actually equivalent to

them. In Ricci-flat space (2.8), the left and right duals are equal, and

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

r ,:
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the system is self-dual, in the sense that the basic equations (2.2) and

(2.3) hold for *Rabcd; conversely, self-duality implies (2.8).

To obtain the linear approximation,we assure that the metric is the

sum of a potential h ab which is small, and a background which is flat. We

assume further that covariant differentiation with respect to the background

does not alter orders of smallness; and we discard anything smaller than the

potential. Since this decomposition is not unique, the potential is subject

to a gauge transformation

hab ♦ hab + &a b + &b a '	 (2.11)

At this point we can avoid some tedious repetition by means of a small

change in notation. From now onwards, the background metric will be denoted

by gab and used for all operations of index shifting and covariant differentia-

tion. In our new notation,the full metric is gab + hab '

qr
{gPQ,rs

 + gkm[pq,k][rs,m]}aabacd - p'

and

ps qr
Rabcd ahpq;rsaabacd

Instead of (2.1) ,

(2.12)

(2.13)

From these two equations there now follow the basic identities (2.2)

and (2.3), with all the consequences we have already drawn from them. Be-

cause of (2.12),we can introduce Cartesian co-ordinates x  in which the

components of the background metric are constants. Then, for aty 
Rabcd 

sub-

ject to the basic equations (2.2) and (2.3), the general solution of (2.13)

is given by

1

hab - 2xpxq	R(Ax)a 
pq 
bX(1-X)da + 

&a b + &b a'.	 ^
0

(2.14)
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provided that this integral exists. I.ocaliy, at least, we can discard the

gravitational potential and its attendant gauge transformation.

We conclude by making two trivial formal changes: in the rigorous

4

theory we shall regard

equations(2.1); and in

that 
Rabcd 

is small'.

all the basic equation

Rabcd as an independent field, subject to the field

the linearized theory we shall drop the assumption

Formally,then,our theories look almost identical:

s for the metric and the field are the same in both

theories, except that (2.1) in the rigorous theory is replaced by (2.12) in

the approximation. The difference is of some significance in our computations.

3. Geometrical preliminaries

Suppose that we have a parametrized time-like line in Minkowski space.

We confine our attention to the subspace consisting of future null-cones spring-

ing from this source-line. It may be the whole of space, as for example, when

the source is bounded by a three-dimensional cylinder. In any case, if the

source is sufficiently smooth the subspace will be a four-dimensional manifold.

From these ingredients alone, without utilizing any extraneous elements, we

shall construct a number of fields throughout the region.

On the line itself, we have the parameter a and various functions of it,

such as the tangent vector and its squared magnitude K. To define these

fields throughout the region, we require that they shall be constant on each

of the special half-cones. The procedure is consistent, because the half-cones

do not intersect. Next we consider the null displacement from the source line

to a point of the subspace. By contracting it with the tangent and its first

derivative respectively,we form the scalarsp and pH: thus if the source line

is, in Cartesian co-ordinates,

x  ° Xk (a) ,	 (3.1)

tWe could have avoided this condition in the first place by making an expansion
in terms of a small parameter. So we are no worse off than in a more laborious
formulation of the approximation theory.
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we have

gab [ xa - Xa(o) l [xb - Xb(a) l 	 0,	 (3.2)

P : nkr (a)[xr _ X^(o )]: 0,	 (3.3)

•.

H :=Xra r ,	 (3.4)

K :=Xrkr 	(3.5)

where the dot denotes differentiation with respect to a.

We extend this operation to an arbitrary scalar (or tensor) field ^ by

writing

:,gabs; a[X_ - 
Hpa 9b ).	 (3.6)

It is convenient also to introduce the 2 -space Laplacian

ate :-p 2 (*Map*M
P ,
b ^ ;

b ) ., a
$	 (3.7)

where

Mab 
: °2p , [aa 9 b1 9 	 (3.8)

and *Mab is its dual,

*m
ab :'^nabcdM 

do
	

(3'9)

From Mab and the null bivector

Nab :-K 	 - HMab ) ,	 (3.10)
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we can construct three linearly independent solutions of the algebraic con-

ditions (2.2) and (2.8):

Dabcd	 :-MabMcd	 *Mab *Mcd - (gadgbc	 gacgbd)/3,	
(3.11)

III abcd :-Mab Ncd + NabMcd - *Mab *Ncd	 *Nab*Mcd,	
(3.12)

Nabcd	 :-Nab Ncd	 *Nab*Ncd'	
(3'13)

These fields, lice the scalars a and H, are constant on any future null ray

from the source. They are of types (2,2), (3,1) and (4) respectively, in

the Penrose classification. All have Q, k as propagation vector.

We can construct similar fields by substituting higher derivatives for

Xa . To describe the process in general terms, we introduce a vector-field

ta (a) without describing specifically how it is formed from the tangent field

and its derivatives. We project t o and o, a into the subspace orthogonal to

*a , and take the cosine l of the angle between these projections; assuming,

of course, that the first of the projections does not vanish:

K- ^Aq )tq ^	 (3.14)

where

A :-K
-2 

1(t p AP) 2 - Kt  eP ] a^U
	 (3.15)

Since K-1A is the Laplacian on a unit sphere, and a is a direction cosine,

(A + 2K)a - 0.	 (3.16)

We now write

11	 Lab :-(1-A2)-
1[2t[aa0b]	 tpo' pMab]'	

(3.17) 
i
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Labcd ' -LabLcd - *Lab*Lcd'	 (3.18)

The first tensor is linearly dependent on Nab and *Nab ; the second on

Nabcd 
and *Nabcd' We see that Ko, ao, b is invariant under transformations

of the parameter a, and that

LapLpb = (1-A 2 ) -l AKo, ao
9b

:	 ( 3.19)

thus we associate an invariant magnitude (1-1.2)-'A(c) with the null bivector

Lab and the source-line. In each null cone of constant o, L ab is singular

on the two rays defined by A - ±1.

In the special case t a
	 s
- X , a is proportional to H - k/ 2K , and (3.16)

reduces to

(A + 2K)H - K.	 (3.20)

4. Non-geodetic particle in the linearized field theory

In special relativity, a particle is represented by a time-like world-line,

together with certain functions on the line which describe intrinsic properties,

such as mass and spin. One would expect gravitational effects to be infinite

at the world-line, to propagate with the speed of light, and to disappear at

infinity. We shall be concerned with a very simple kind of particle, in which

all the intrinsic functions reduce to a single constant, the mass. We shall

demand also that at very close quarters its field becomes indistinguishable

from that of the Schwarzschild solution. To make this idea more precise,we

shall define a Schwarzschild field for an arbitrary time-like world-line.

For a straight world-line, this is simply the linear approximation to the
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curvature tensor of Schwarzschild solution with its .source on the worl(1 -1 fnv.

At any point of an arbitrary time-like world-line, we construct the straight

line tangent to it, and the Schwarzschild solution for a unit mass locat ed

on the straight line. This we restrict to the future null-cone with its

vertex at the point. Piecing; together the fields obtained in this way,we

get the SchwarzschiZd fieZd,

3(p / ►/K)-3Dabcd'	 (4.1)

The algebraic conditions (2.2) and (2.8) are satisfied identically. The

differential equations (2.3) are satisfied if and only if the source-lino

is straight. We are now faced with a well defined problem: to find a solu

-tion of the basic algebraic and differential equations with the following

three properties:

1) It is constructed from the source line, the future null-cones

emanating from it, a scale factor, and nothing else;

2) It consists of terms of degree -3, -2 and-1, in p;

3) Its leading term is the Schwarzschild field (4.1).

The Schwarzschild botution, incidentally, may be written as

Pabed - pK-ji[ 3 (P ab edP 	- *P 
ab cd

*P ) + 
2Pkt,P 

k,C (8ad 8be - 8acbd8	 ) a +	 1;4 1 ^.

where Pab is the unit Coulomb field. it is easy to see that the field

Pabcd - 
3K 3K(p-3D

abcd + 
0-21II

abcd + p-1Nabcd )0 	
(4 3)

which we obtain by substituting the Lidnard -Wiechert solution t

Pab :-K(p-2Mab + p-1 Nab)	
4./+)

(This form of the solution is essentially the same as that given by Synge.

1
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Into (4.2), has all the features we are looking for, apart from the vanishing

of itt: divergence.	 For that, one calcctl.-Ite•-^

P	 d	 _3p-9R7(2 f 	,	 - f' p '•	 'i	 )(1(4.5)
abc ;d	 (a ^^	 p" ab	

,%.

where

(4.6)

which vanishes for a line of constant curvature. We have thus succeeded in

constructing a very natural generalization of 5chwarzschild solution, in

which the acceleration of the source is constant but not necessarily zero.

Could we construct a solution about an ^:,:.trarr, base-line by making;

a better choice of the field in 1 /p'	 A straightforward calculati ,,.-i shows

that, for any f'a(a),

-1	 d	 -1 L
	 d

(A ^Labc );d 
,^ 

P	 abc Yf ;d .	 (4.7)

hence, if 
to 

is given by (4.6), and

Ka (3-.1 2 ) /3 3A,	 (4,S)

the divergence of 31YK-^PLabcd just cancels out that of rabcd'

There is one difficulty. By taking Y in equation (4.7) to be a function

of a only, we obtain a spherically-fronted null solution emanating from a

time-like source; and it is well known that such a solution has at least one

singular direction on each null cone. In this case, we have seen that there are

two such singular directions, corresponding to the intersection of the null cone

with the plane containing 
k  

and t a ; that is, to the values ± 1 of A. 'rhest

singularities survive when T is given by (4.8). We can get rid of either one,

6
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but not both at once, by adding 4 2K13 3A to I'. This has the effect of add-

ing a spherically-fronted wave originating on the source--line. By adding

the most general wave of this kind, we obtain

^ 3	 1gabcd - U/K(pDabcd + P-2111 abcd + PsN abcd )'

10

(4.9)

where	 N	 :-N	 + I'L	 + W W + W W ,	 (4.10)
abcd	 abcd	 abed	 ab cd	 ab ed

W	
:-PW r o	 ,	 (4.11)

ab ,6a ^b J

and

W - W(Q, to tan 1A + W;i	 (4.12)

6,0 being polar coordinates on each of the unit spheres for which a is con-

stant and P - 3K. On those null cones where t o 0 0, however, there is no

way of choosing W so that Nabcd is bounded in all directions. The only accept-

able solution,of the class constructed here, has a line of constant curvature

as its source.

5. Comparison with the electromagnetic field

There is a very close formal resemblance between the electromagnet 1-r ;i1,,1

the linearized gravitational fields, outside sources. In Maxwell's theory, we

start with a potential 0a , defined up to a gauge transformations

-► 	 +^a	 a	 ^	 ('i , 1)a .

The field

Fab :-^a,b - ^b a	
(5.2)
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then satisfies

Fab = F (ab)' F[ab,c)	
0, (5.3)

identically. Conversely, given any solution of the basic field equations,

we can recover the potential up to a gauge t,:ansformation. The remaining

field equations for empty spaces

Fab,b 
s 0)	 (5.4)

s

are necessary and sufficient conditions for the system to be self-dual that

is,for *Fab to satisfy the basic equations (5.3). This being the case, it

is instructive to consider how we migh t have proceeded if the analogy went

even further, and we knew the Coulomb solution but not the Lidnard-Wiechert

potential,

_ (Kp-1 - H)cr	 + (tnp)	 (5.5)

Following the procedure used in Section 4, we should define a Coulomb field

for an arbitrary time-like line. This turns out to be p -2 KMab It satisf'i.es

(5.3) but not (5.4); so we should look for an additional term in p 1 whirli

satisfies the first two equations and annihilates the charge current vector of

the Coulomb field. An obvious solution is given by

Fab = Pab + (Wab + Wab)fp'	
(5.6)

with (4.4), (4.11), (4.12), and some further restriction on W to ensure that the field

can be constructed out of the source-line and its future half-cones only. The

last term in (5.6) is made zero to avoid singular generators on the null cones.

Thus the difference between the two cases reduces to this: in the eteetro-

-.	 magnetic case we can avoid singularities for an arbi•trariZg moving source; in

the gravitationaZ case,onZg for a source moving with a constant acceleration.
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6. A special class of metrics

The field obtained in Section 4 belongs to a class of curvature tensors

which has been extensively investigated in the rigorous theory. The metl,.c:

in such cases is formed out of functions

m(a),	 f (a ,&),	 a(a,&),	 p(c & n) ,

subject to

of/aa + f 2 aa/a& - 0.

It may be written as

da l = (K - Up - 2m/p)da 2 + 2dpda

-p 2 p-2 [ f -1 (d^ + afda) 2 + fdn21,

12

(6.1)

(6.2)

(6.3)

with

H : = (tnp - Vnf) ' ,

K : -A (tnp - Vnf) ,

where, for any

:-any/aQ - a4',

Ate :=p 2 [ (f^ , )' + f -1 a 2 Oan 2 ] .

From these definitions, (3.20) again follows identically. For empty space

A - 3Hm	 14-AK,

(6.4)

(6.5)

r

(6,o)

(6.7)

(6.8)

(6.9)
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whence

k(A + 2K)AK • 2Km - 3mK;	 (6.10)

for nullity or flatness,

m a 0,	 (6.11)

K	 K(cr).	 (6.12)

The system of equations is invariant under the transformation

P -' P/i(Q)	 Q -► E(a),	 (6.13)

with	 [&,n]: for positive K, therefore, we may replace (6.12) by

the stronger condition

K - 1.	 (6,14)

Flat space-time is characterized by (6.10), (6.11) and

[F + p- 1 ( f 2 p ,, _ 3 2 p/an 2 )]' = 09
(6,1'))

[ p_1 ( f ' 3p / a n - 2f ap '/anJ * - 0,

where

F : ¢14-f' 2 - off,,.	 (6.1.6j

The scalars p,a, H, K, together with the operators A and ', here revert to

the meanings they were given in Section 3.

For any surface of constant p and a, the Gaussian curvature is K /p2.

A singularity in K not only shows that the corresponding subspaces are singular,

but also gives rise to a directional singularity in the curvature tensor.

This involves the coefficient of p -2 , unlike the singularities discussed in
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Section 4, which are confined to the term in :-1.

These are all well known results for the case

f - 1, a = 0.	 (6.17)

To establish them more generally, it is sufficient to observe that (6.17)

is a co-ordinate condition, arising from the transformation

(6.18)

with

d- = f-1 d& + ada,	 (6,19)

which is integrable on account of (6.4).

If p is independent of n, however, it is sometimes more convenient

to put	 1/p in the transformation (6.18), so that

p = 1, H = ^(af)' , K	 - f"	 (6. 20)

and (6.9), (6.12), (6.15) reduce to

If (f"' - 12 am) + 8&dm /do]' = 0,	 (6.21_)

F' = 0,	 (6 , 2i.;

aF/aa = 0 9	 (6.23)

respectively. We still have at our disposal the transformations (6.13)

combined with

I,nJ -^ I^ /E2,n]	 (6.24)

(6.18) with

+ =(o);	 (6.25)
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and

[p,Q,F,'I	 ' rp'0or,(n+v) /;il, 	 (6.26)

with u and v constant. Hence we can reduce the most general null or f1nr

field with positive K to

f = F(a) -f, 2 , a = A(v) + 3G /da,
(6.27)

G :- fin( ( 3F + 0/01F - ^)]}/2 3F,

with the further reduction to

f = I	 & 2 ,	 a = a(a),	 (6.28)

in the flat case. Here p = 0 can be shown to represent a line, of curva-

ture a(o), in a fixed space-time plane.

7. Gravitational potential.

We divide the metric into a background and a potential, requiring the

background to satisfy (6.11), (6.14),(6.15). Hence

(A + 2)H = 0 9	(7.1)

from (3.20); and

A(6K - 6H6m) = 46m,	 (7.2)

from the variation of (6.9). There are now two possibilities: either

6m = 0,	 (7.3)

and

6K = 6H6m + K(a);	 (I.4)

i

i
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or 6K is singular. We have seen, however, that a singularity in K leads to

an unacceptable sin,ularity in the curvature tensor; and this effect does

not disappear ir, the linear approximation. We therefore opt for (7.3) and

(7.4), adjoining

r(a) - 0,	 (7.5)

by means of an infinitesimal transformation (6.13).

This is a crucial decision: without it, the linearized curvature tensor

would include the most general field which is algebraically degenerate and sub-

ject to the conditions laid down in Section 4; when (7.3) and (7.4) are satis-

fied, however, the linearized curvature tensor coincides precisely with the

solution (4.9) for a particle in arbitrary motion.

In the co-ordinates (6.17) the potential satisfies

hkt. - Ta',ka, Z + upQ
,kZ
	 (7.6)

for any background, where

T :-^6K + (v + uH)p - (6m + um)/p 	 (7.7)

and

U :_^Zf /f - 6P/P.	 (7.8)

From (6.5) , (6.8) , (6.14)

6K + (Q + 2)u - 0.	 (7.9)

Hence, using (7.4), (7.5), and substituting

u - 2H tnlh - H) + 2h + w, h :-± 3 (XaXa),	 (7.10)

6

y..
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we obtain

(e + 2)w - 0 9 9pgw
,P jg

a	 - 0.
	

(7.11)

Equations (7.4)-(7.7) and (7.10), together with the background conditions,

constitute an algorithm for constructing the potential out of an arbitrary

source-line, the future null cones springing from it, a parameter bm, a function

w subJect to (7.11), and nothing else: all the auxilliary appara tus has

disappeared. To complete the operation, we must select an intrinsic solution

of (7.11): a simple example is

W - 0.
	

(7.12)

For any a such that Xadm ¢ 0, there is at least one generator of the
future half-cone on which u is singular: that follows immediately from (7.1),

(7.4) and (7.9). In the special case (7.12), there is only one singular

generator: an intersection of the half cone with the plane of A  and Xa.

For motion in which this plane is independent of a, we shall construct an-

other : for"at of potential. We could do so by means of a gauge transformation

(2.11); but it is easier to start from different coordinate conditions: (6.20)

instead of (6.17), with (6.28) for the background. We then have

Of - aff'6m)" - Of	 (7.13)

from the (7.4), (7.5),.and

aaf/aa + f 2 6a' - Of
	

(7.14)

from (6.2); whence

i

df - of f' bm + 0(a) + f' ^ (a) , 	 (7.15)
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6a + a6mtnf	 + VII + Of + a(a).	 (7.16)

A transformation (6.25) gives

W)=0.	 (7.17)

The remaining functions of integration, $ W and a( a), come directly from

the functions F and A of the exact solution (6.27).

For ea to be nonsingular, both A and $ must be zero. We then have a

particle of constant background acceleration, unaccompanied by a wave. Sup-

pose that a vanishes as well. We remove ^ by a transformation (6.26), and

change the notation slightly: in place of m + 6m, f. + 6f, a + 6a, we write

m, f, a. The metric which we thereby reassemble out of the background and

the potential is given by (6.3), (6.20) and

f = (1-C2)(1-2am&),
	 (7.18)

with constant a and M. It: satisfies (6.2) and (6.21) exactly.

8. Singularities in the potential.

-^	 Let S be a surface w"re p = 1 and a is constant. The line-element &I

'	 induced on S by the background qietric is that of a unit sphere. When a

gravitational potential is added to the background, the induced line-element

becomes (1+u)dQ, correct to the first order in u. To the same accuracy, how-

ever, this is the line-element of the distorted sphere

(8.1)r	 l+u,

a in Euclidean 3-space. A singularity in u corresponds to a spike in the

'	 distortion; and we see from (7.9) that such a spike develops whenever we

introduce a spherical harmonic of degree one into 6K.
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In the case of axial symmetry, we can deal with such singulariticH more

precisely. Consider the line-element

ds 2 • f-l dC 2 + fdn 2 ,	 ! ail,	 (8.2)

where f(&) is C 2 and positive in the interval (-1,1), vanishing at the end

points, so that

1

&Kdt	 -[f'(1) + f'(-1)].
	

(8.3)

.-1

Let

UM :_ 3{ f- 1[1 -(f'12u)2])d&,	 v(&) : = 3f, 	 (8.4)

where 2u is the upper bound of Jf'Jin (-1,1). In a Euclidian plane, the

curve

x = uW, y - VW,	 (8.5)

has the slope

dy /dx	 [( ► /f')2-1]_11 .	 (8.6)

and the surface formed by rotating it about the x-axis (through an angle

^ = un) has the line--element (8.2). By adjusting the range of n, we can

always arrange for the surface of rotation to be regular at either one of

its intersections with the axis: because of (8.3) and (8.6), the condition

for it then to be regular at the other end point is	 ti

1

&Kd& = 0.	 (8.7)

_1

...E
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Viewing (8.7) against the slightly unnatural background of the unit sphere

(6.28), (8.2), we might describe it ns the condition for there to he no

surface harmonic of degree one in K.

In the exact solution (7.18), this condition is violated; and the

subspaces of constant p and a.have conical singularities at t - 1, or

C - -1, or both, depending on the range of n.

Thus, in both approximate and exact solutions, an y acceleration give;

rise to directional singularities.

9. Surface Integrals.

Reverting, for the moment, to the rigorous theory, and writing

abrArab
cds	 dads 	

(9.1)

tabcd :-nabpgncdrsrk r
t	 (9.2)pr gsgktO

we have

g(0abcd + tabcd ) - Arabcds

	

	
(9.3)

,rs

from (2.1) and (2.10).

Suppose that E is a time-like hypersurface with the normal n a , that : is a

closed surface in E with the oriented surface element dS a , and that

Jab-- g(0abpq + t abpq ) ng dSp ,	 (9.4)
S

in co-ordinates for which the components of n  are constants. Because of (9.3), and

the antisymmetry of 
Arabcds 

in its last three indices, each component of Jab

is the curl of a vector integrated over a closed surface; and therefore

Jab	 0.	 (9.5)

This is an exact result.
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In the linear approximation, if F, is a hyperpInne, we mnv put

t abcd	 0

by taking Cartesian co-ordinates. Suppose, in particular, that we define

E by fixing the scalars p and o in (3.3). Lot S be its intersection with

the null cone given, for the same value of o, by (3.2). Demanding further

that

n 
a 
n a = 1 = -g,

we find that

Jab = J^K-Ip2G ab cd M d c dw

over a unit sphere.

For the fields defined by (4.9)-(4.12), the integrand turns out to be

(2p-1Mab 
+ 3Nab)VK

or

6K 3/2 6 P
	 (gpq + r

prq ) + 2rJasb^,

(9.6)	 I

(9.7)	 1

(9.8)	 1

(9.9)	 I

(9.10)

where

ra : =(Ra - Kva)/ 3K,

8  :=2p -1Xa + 3K- ^ K_ Xa]•.

On integrating, we obtain

J	 $nK-3/2 (X
ab	 a 

Xb 
-'
 X 

a
Xb),

which, by (9.5), entails vanishing acceleration.

(9.11)

(9.12)
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Thus, following Trautman's suggestion, we can complete ntir doriv.1t icon

of the equations of motion without calculating the potential.

10. Remarks

In Section 4 we set up criteria for a simple particle, examined a clans

of possible solutions, and showed that it contained just one acceptable member:

a particle in constant acceleration. By a slight extension of the argument

developed in Section 7, we can show that this is the only acceptable solution

which can be constructed out of the bivectors 
N
ab' Mab and their duals. We

made no use, however, of the null bivectors with

k - 
^ Ko,a

as their principal null direction, which are needed to complete the basis.

E. T. Newman 3 , who has investigated the problem more generally, informs us

that we lose nothing by this omission. Thus, the gauge invariaiit field

theory set up in Section 2 gives rise to an equation of motion: the accel-

eration of a simple particle must be constant but not necessarily zero.

P. G. Bergmann4 has pointed out that two of the three ingredients of

this curious result are invariant under the 15-parameter conformal group:

the linearized equations for empty space, (2.2), (2.3) 9 (2.$), (2.12), from

which we start, and the hyperboli, trajectory with which we end. The only

thing missing is a conform-invariant definition of a simpl e particle; but

this we have been unable to provide.

We have already remarked on the close formal resemblance between the

gravitational and electromagnetic solutions for sources with constant acceler-

ation.	 here, as in the electromagnetic case, it is convenient to combine

''	 a retarded solution for one branch of the hyperbola with an advanced solution,
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of the opposite charge, for the other. The resulting field is defined through-

out space--time, except on the null hyperplane through one of the asymptotes

of the Hyperbola. At each point of the field, the four principal null directions

reduce to two pairs: the two null rays connecting the point with the hyperbola.t

It is easy to see that

R 
abcd R	 0 	

*R abcd
abcd >
	

abcd	
0.	 (10.1)

In general, however, the principal null directions of an empty-space Riemann

tensor determine it up to a change of scale and a duality rotation; while (2.3)

reduces the two functions involved in these transformations to constants, un-

less the Riemann tensor is null. In the present case, the Riemann tensor is

not null; and (10.1) excludes duality rotation. For any space-time hyperbola,

therefore, our two conditions are sufficient to determine the field up to a

constant factor. Both conditions, however, are manifestly conform-invariant;

and both hold in the limiting case where the trajectory becomes a straight line. tt

The solution is thus a conformal transformation of the linear approximation to

Schwarzschild's metric.

t 
See Appendix.

tt As Trautman remarks l , Elie Cartan 5 must have known all about this in 1922, when
he wrote: Nous pouvons convenir d'appeler Univers optique d'Finstein 1'espace
conforme gdndrslisd normal ddfini en annulant le ds 1' de l'Univers d'Einstein.
C'est conformement aux proprietes geometriques de cet Univers optique que se
fait la propagation de la lumiAre. La courbure de rotation de cet Univers est
ddfinie en chaque point par dix quantitds scalaires, ou encore par une forme
quadratique ternaire 3 coefficients complexes, qu'un changement due systeme
de rdfdrence transforms par une substitution orthogonale. Au point de vue
gdomdtrique, lapropridtd suivante mdrite d'etre signalee. I1 1xiste en chaque
noint A quatre directions optiques (c r est-A'dire annulant le ds ) privildgides.
Elles sont caractdrisdes par 1a propridtd que si AA' est l'une d'elles, elle
se conserve par le ddplacement associd 'd un paralldlogramme dldmentaire admettant
comme cbtds AA' et une autre direction optique queZeonque issue de A. Dons le
cas du del dune seule masse attirante (d8 2 de Schwarzschild), ces quatre dir-
ections optiques privildgides se rdduisent A deux (doubles): les deux rayons
lumineux qui leur correspondent iraient au centre d'attraction ou en viendraient.
[In his geometrical characterization of privileged directions, Cartan evidently
had the degenerate case in mind].
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The rigorous solution (7.18) was discovered by Levi-Civita o in 1918,

rediscovered by Newman and Tamburino 9 , mentioned by Robinson and Trautman8,

described (as the C metric) by Ehlers and Kundt 9 , and again by Kinnersleylo

In his survey of type I) solutions. It was first "tentatively identified

as the gravitational analog of the runaway solutions encountered in electro-

dynamics"by Kinnersley ll, on the basis of its asymptotic Killing vectors.

We arrived independently at a more definite identification by writing the

metric in the form given here, which exhibits clearly its connection with

I	 the linear approximation. Physically the solution is unacceptable on

account of the singularities described in Section 8. A generalization by

Kinnersley and 14alker 12 includes metrics free from this defect.

mere is always some pleasure in looking at old results from a new

point of view. It is our hope, however, that the present work provides

something more: a technique that can be used to investigate the motion of

quite complicated systems in a surveyable manner.

This paper has grown out of a long series of seminars and discussions.

The authors are happy to take this opportunity of thanking all those who have

participated in them. They are most grateful to Mrs. Helen Armstrong;, without

whom the paper could not have been produced.
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Appendix: on principal null directions.

The Lienard-Wiechert bivector (4.4) may be written as

-3
Pdb a 2V v [aub] ,	 (A.1)

where

ua 	 P o Oa	 (A.2)

va 	V ((K - HP)Xa + pXa ] - ua ,	 (A.3)

and V is a disposable scalar. Hence, using (3.2) and (3.3), we have

$ - xa + uax	 .	 (A.4)

At any point of the field, therefore, u  is a null displacement from the

source. By taking

V - h p [(H - K/2K - K/P) 2 - KA2 ^
	 (A.5)

where A is the scalar of acceleration,

-
A :- [K 1 (K/2

y
)
2 - K-2XrXrJ ,
	 (A.6)

we make v  null too. Then u  and v  are both solutions of the equations

krkr - 0,	
k(aRb)pgckpkq - 0,
	 (A.7)

for the field given by (4.2), (4.4) and R
abcd "2 abcci

P	 : consequently,

the four principal null directions of this field reduce to two pairs,

along u  and va.
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Suppose that A # 0. Writing

Ya := A-2 K (K Xa)

Z
a	 a	 a	 a

s=Y +u +v ,

we have

XaYa = 0, YaYa = -A-2,

and

XCaYbZcl = 0, ZaZa	-2= -A.

We turn now to the special case in which the field satisfies

the Bianchi equations (2.3). As we have seen, the source is then one

branch of a space-time hyperbola. We can choose the parameter and

Cartesian coordinates so that the full hyperbola is given by

Xa (a) = e(PachAa + QashAa)

where Pr and Q  are constant vector fields subject to

PrQr = 0, P 
r 
P r _ -QrQr = A-2

26

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

while

C = ± 1.

Alternatively, without using a parameter, we may write the hyperbola

as the intersection of a hyperboloid

X x  = -A-2
a

(A.14)

(A.15)
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and a space-time plane

P
(a
Qbxc = 0.
	 (A.16)

It is easy to verify that the constant A satisfies (A.6) and that

Ya	Xa.
	 (A.17)

In fact, (A.17) is sufficient to characterize a hyperbola: from (A.10)

we then have that A is constant, and that X  lies on the hyperboloid

(A.15); while (A.8), with A constant, shows that X  lies in a fixed

space-time plane.

From (A.11) we now see that Z  lies on the same hyperbola. From

(A.4), (A.17) and the definition (A.9), however,

Za = x  + v  :
	

(A.18)

14/

thus va , like ua , is a null disrlacemuat from the hyperbola.
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