1,945 research outputs found
What can legacy datasets tell us about soil quality trends? Soil acidity in Victoria
Purpose-built soil monitoring networks have been established in many countries to identify where soil functionality is threatened and to target remediation initiatives. An alternative to purpose-built soil monitoring networks is to use legacy soils information. Such information yields almost instant assessments of soil change but the results should be interpreted with caution since the information was not collected with monitoring in mind. We assess the threat of soil acidification in Victoria using two legacy datasets: (i) the Victorian Soils Information System (VSIS) which is a repository of the results of soil analyses conducted for scientific purposes since the 1950s and (ii) a database of 75 000 routine soil test results requested by farmers between 1973 and 1993. We find that the VSIS measurements are clustered in space and time and are therefore suitable for local rather than broad-scale assessments of soil change. The farmers' results have better spatial and temporal coverage and space-time models can be used to quantify the spatial and temporal trends in the pH measurements. However, careful validation of these findings is required since we do not completely understand how the measured paddocks were selected and we cannot be certain that sampling or laboratory protocols have not changed with time
Phylogenetic relationships of African Caecilians (Amphibia: Gymnophiona): insights from mitochondrial rRNA gene sequences
Africa (excluding the Seychelles) has a diverse caecilian fauna, including the endemic family Scolecomorphidae and six endemic genera of the more cosmopolitan Caeciliidae. Previous molecular phylogenetic studies have not included any caecilians from the African mainland. Partial 12S and 16S mitochondrial gene sequences were obtained for two species of the endemic African Scolecomorphidae and five species and four genera of African Caeciliids, aligned against previously reported sequences for 16 caecilian species, and analysed using parsimony, maximum likelihood, Bayesian and distance methods. Results are in agreement with traditional taxonomy in providing support for the monophyly of the African Caeciliid genera Boulengerula and Schistometopum and for the Scolecomorphidae. They disagree in indicating that the Caeciliidae is paraphyletic with respect to the Scolecomorphidae. Although more data from morphology and/or molecules will be required to resolve details of the interrelationships of the African caecilian genera, the data provide strong support for at least two origins of caecilians in which the eye is reduced and covered with bone, and do not support the hypotheses that the caecilian assemblages of Africa, and of East and of West Africa are monophyletic
Uniqueness Theorem for Generalized Maxwell Electric and Magnetic Black Holes in Higher Dimensions
Based on the conformal energy theorem we prove the uniqueness theorem for
static higher dimensional electrically and magnetically charged black holes
being the solution of Einstein (n-2)-gauge forms equations of motion. Black
hole spacetime contains an asymptotically flat spacelike hypersurface with
compact interior and non-degenerate components of the event horizon.Comment: 7 pages, RevTex, to be published in Phys.Rev.D1
Sixty Years of Fractal Projections
Sixty years ago, John Marstrand published a paper which, among other things,
relates the Hausdorff dimension of a plane set to the dimensions of its
orthogonal projections onto lines. For many years, the paper attracted very
little attention. However, over the past 30 years, Marstrand's projection
theorems have become the prototype for many results in fractal geometry with
numerous variants and applications and they continue to motivate leading
research.Comment: Submitted to proceedings of Fractals and Stochastics
Ferromagnetic phase transition and Bose-Einstein condensation in spinor Bose gases
Phase transitions in spinor Bose gases with ferromagnetic (FM) couplings are
studied via mean-field theory. We show that an infinitesimal value of the
coupling can induce a FM phase transition at a finite temperature always above
the critical temperature of Bose-Einstein condensation. This contrasts sharply
with the case of Fermi gases, in which the Stoner coupling can not lead
to a FM phase transition unless it is larger than a threshold value . The
FM coupling also increases the critical temperatures of both the ferromagnetic
transition and the Bose-Einstein condensation.Comment: 4 pages, 4 figure
Recommended from our members
Sporormiella as a tool for detecting the presence of large herbivores in the Neotropics
The reliability of using the abundance of Sporormiella spores as a proxy for the presence and abundance of megaherbivores was tested in southern Brazil. Mud-water interface samples from nine lakes, in which cattle-use was categorized as high, medium, or low, were assayed for Sporormiella representation. The sampling design allowed an analysis of both the influence of the number of animals using the shoreline and the distance of the sampling site from the nearest shoreline. Sporormiella was found to be a reliable proxy for the presence of large livestock. The concentration and abundance of spores declined from the edge of the lake toward the center, with the strongest response being in sites with high livestock use. Consistent with prior studies in temperate regions, we find that Sporormiella spores are a useful proxy to study the extinction of Pleistocene megafauna or the arrival of European livestock in Neotropical landscapes
Onset of Superfluidity in 4He Films Adsorbed on Disordered Substrates
We have studied 4He films adsorbed in two porous glasses, aerogel and Vycor,
using high precision torsional oscillator and DC calorimetry techniques. Our
investigation focused on the onset of superfluidity at low temperatures as the
4He coverage is increased. Torsional oscillator measurements of the 4He-aerogel
system were used to determine the superfluid density of films with transition
temperatures as low as 20 mK. Heat capacity measurements of the 4He-Vycor
system probed the excitation spectrum of both non-superfluid and superfluid
films for temperatures down to 10 mK. Both sets of measurements suggest that
the critical coverage for the onset of superfluidity corresponds to a mobility
edge in the chemical potential, so that the onset transition is the bosonic
analog of a superconductor-insulator transition. The superfluid density
measurements, however, are not in agreement with the scaling theory of an onset
transition from a gapless, Bose glass phase to a superfluid. The heat capacity
measurements show that the non-superfluid phase is better characterized as an
insulator with a gap.Comment: 15 pages (RevTex), 21 figures (postscript
Ultrarelativistic black hole in an external electromagnetic field and gravitational waves in the Melvin universe
We investigate the ultrarelativistic boost of a Schwarzschild black hole
immersed in an external electromagnetic field, described by an exact solution
of the Einstein-Maxwell equations found by Ernst (the ``Schwarzschild-Melvin''
metric). Following the classical method of Aichelburg and Sexl, the
gravitational field generated by a black hole moving ``with the speed of
light'' and the transformed electromagnetic field are determined. The
corresponding exact solution describes an impulsive gravitational wave
propagating in the static, cylindrically symmetric, electrovac universe of
Melvin, and for a vanishing electromagnetic field it reduces to the well known
Aichelburg-Sexl pp-wave. In the boosting process, the original Petrov type I of
the Schwarzschild-Melvin solution simplifies to the type II on the impulse, and
to the type D elsewhere. The geometry of the wave front is studied, in
particular its non-constant Gauss curvature. In addition, a more general class
of impulsive waves in the Melvin universe is constructed by means of a
six-dimensional embedding formalism adapted to the background. A coordinate
system is also presented in which all the impulsive metrics take a continuous
form. Finally, it is shown that these solutions are a limiting case of a family
of exact gravitational waves with an arbitrary profile. This family is
identified with a solution previously found by Garfinkle and Melvin. We thus
complement their analysis, in particular demonstrating that such spacetimes are
of type II and belong to the Kundt class.Comment: 11 pages, REVTeX
Some Findings Concerning Requirements in Agile Methodologies
gile methods have appeared as an attractive alternative to conventional methodologies. These methods try to reduce the time to market and, indirectly, the cost of the product through flexible development and deep customer involvement. The processes related to requirements have been extensively studied in literature, in most cases in the frame of conventional methods. However, conclusions of conventional methodologies could not be necessarily valid for Agile; in some issues, conventional and Agile processes are radically different. As recent surveys report, inadequate project requirements is one of the most conflictive issues in agile approaches and better understanding about this is needed. This paper describes some findings concerning requirements activities in a project developed under an agile methodology. The project intended to evolve an existing product and, therefore, some background information was available. The major difficulties encountered were related to non-functional needs and management of requirements dependencies
Stress corrosion cracking in Al-Zn-Mg-Cu aluminum alloys in saline environments
Copyright 2013 ASM International. This paper was published in Metallurgical and Materials Transactions A, 44A(3), 1230 - 1253, and is made
available as an electronic reprint with the permission of ASM International. One print or electronic copy may
be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via
electronic or other means, duplications of any material in this paper for a fee or for commercial purposes, or
modification of the content of this paper are prohibited.Stress corrosion cracking of Al-Zn-Mg-Cu (AA7xxx) aluminum alloys exposed to saline environments at temperatures ranging from 293 K to 353 K (20 °C to 80 °C) has been reviewed with particular attention to the influences of alloy composition and temper, and bulk and local environmental conditions. Stress corrosion crack (SCC) growth rates at room temperature for peak- and over-aged tempers in saline environments are minimized for Al-Zn-Mg-Cu alloys containing less than ~8 wt pct Zn when Zn/Mg ratios are ranging from 2 to 3, excess magnesium levels are less than 1 wt pct, and copper content is either less than ~0.2 wt pct or ranging from 1.3 to 2 wt pct. A minimum chloride ion concentration of ~0.01 M is required for crack growth rates to exceed those in distilled water, which insures that the local solution pH in crack-tip regions can be maintained at less than 4. Crack growth rates in saline solution without other additions gradually increase with bulk chloride ion concentrations up to around 0.6 M NaCl, whereas in solutions with sufficiently low dichromate (or chromate), inhibitor additions are insensitive to the bulk chloride concentration and are typically at least double those observed without the additions. DCB specimens, fatigue pre-cracked in air before immersion in a saline environment, show an initial period with no detectible crack growth, followed by crack growth at the distilled water rate, and then transition to a higher crack growth rate typical of region 2 crack growth in the saline environment. Time spent in each stage depends on the type of pre-crack (“pop-in” vs fatigue), applied stress intensity factor, alloy chemistry, bulk environment, and, if applied, the external polarization. Apparent activation energies (E a) for SCC growth in Al-Zn-Mg-Cu alloys exposed to 0.6 M NaCl over the temperatures ranging from 293 K to 353 K (20 °C to 80 °C) for under-, peak-, and over-aged low-copper-containing alloys (~0.8 wt pct), they are typically ranging from 20 to 40 kJ/mol for under- and peak-aged alloys, and based on limited data, around 85 kJ/mol for over-aged tempers. This means that crack propagation in saline environments is most likely to occur by a hydrogen-related process for low-copper-containing Al-Zn-Mg-Cu alloys in under-, peak- and over-aged tempers, and for high-copper alloys in under- and peak-aged tempers. For over-aged high-copper-containing alloys, cracking is most probably under anodic dissolution control. Future stress corrosion studies should focus on understanding the factors that control crack initiation, and insuring that the next generation of higher performance Al-Zn-Mg-Cu alloys has similar longer crack initiation times and crack propagation rates to those of the incumbent alloys in an over-aged condition where crack rates are less than 1 mm/month at a high stress intensity factor
- …
