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Abstract

Sixty years ago, John Marstrand published a paper which, among other things,
relates the Hausdorff dimension of a plane set to the dimensions of its orthogonal
projections onto lines. For many years, the paper attracted very little attention.
However, over the past 30 years, Marstrand’s projection theorems have become
the prototype for many results in fractal geometry with numerous variants and
applications and they continue to motivate leading research.

1 Marstrand’s 1954 paper

In 1954, John Marstrand’s paper [56] ‘Some fundamental geometrical properties of plane
sets of fractional dimensions’ was published in the Proceedings of the London Mathemat-
ical Society. The paper was essentially the work for his doctoral thesis at Oxford, which
was heavily influenced by Abram Besicovitch, a Russian born mathematician who pio-
neered geometric measure theory. For 25 years after its publication the paper attracted
very limited attention, since then it has become one of the most frequently cited papers
in the area now referred to as fractal geometry. Indeed, the paper was the first to consider
the geometric properties of fractal dimensions.

The best-known results from the paper are the following two Projection Theorems,
stated below in Marstrand’s wording, which relate the dimensions of sets in the plane to
those of their orthogonal projections onto lines through the origin. Note that ‘dimension’
refers to Hausdorff dimension, and an ‘s-set’ is a set that is measurable and of positive fi-
nite measure with respect to s-dimensional Hausdorff measure Hs. ‘Almost all directions’
means all lines making angle θ with the x-axis except for a set of θ ∈ [0, π) of Lebesgue
measure 0.

Theorem I. Any s-set whose dimension is greater than unity projects into a set of positive
Lebesgue measure in almost all directions.

Theorem II. Any s-set whose dimension does not exceed unity projects into a set of
dimension s in almost all directions.

The statements are followed by a remark that, by a result of Roy Davies [9], every
Borel or analytic set of infinite s-dimensional Hausdorff measure contains an s-set. This
allows the theorems to be expressed in terms of Hausdorff dimension, and this is the form
in which they are now usually stated. We write dimH for Hausdorff dimension, L for
Lebesgue measure, and projθ for orthogonal projection of a set onto the line at angle θ
to the x-axis, see Figure 1.
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Theorem 1.1. [56] Let E ⊂ R2 be a Borel or analytic set. Then, for almost all θ ∈ [0, π),
(i) dimH projθE = min{dimHE, 1},
(ii) L(projθE) > 0 if dimHE > 1.

Figure 1: Projection of a set E onto a line in direction θ.

Since projection does not increase distances between points it follows easily from the
definition of Hausdorff measure and dimension that dimH projθE ≤ min{dimHE, 1} for
all θ, but the opposite inequality is much more intricate. Marstrand’s proofs depend
heavily on plane geometry and measure theory, with, for example, careful estimates of
the measures of narrow strips in various directions. As John Marstrand once remarked,
analysis essentially consists of integrating functions in different ways and applying Fu-
bini’s theorem - but it may be difficult to find an appropriate function. The proofs in
this paper illustrate this well.

It is worth mentioning that Marstrand’s paper [56] includes a nice, but often forgotten,
extension to the theorems, that the same exceptional directions can apply to subsets of
the given s-set that are of positive measure. In the following statement from the paper
| | denotes Lebesgue measure.

Lemma 13. If E is an s-set and s > 1, then for almost all angles θ, all s-sets A which
are contained in E satisfy |projθA| > 0.

Although Marstrand’s paper is most often cited for the projection theorems, its 46
pages contain a great deal more, much of which anticipated other directions in fractal
geometry.
• Dimension of the intersection of sets with lines. E.g. Almost every line through

Hs-almost every point of an s-set E (s > 1) intersects E in a set of dimension s− 1 and
finite s− 1-dimensional measure.

• Construction of examples with particular projection properties. E.g. For 1 < s < 2
there exists an s-set which projects onto a set of dimension s − 1 in continuum many
directions in every sector.

• Dimension of exceptional sets. The dimension of the set of points from which an
irregular 1-set (see Section 4) has projection of positive Lebesgue measure is at most 1.
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• Densities of s-sets. The density limr→0Hs(E ∩ B(x, r))/(2r)s of an s-set E ⊂ R2

can exist and equal 1 for Hs-almost all x only if s = 0, 1 or 2. (B(x, r) denotes the disc
of centre x and radius r.)

• Angular densities. Bounds are given for densities defined in segments emanating
from points of an s-set.

• Weak tangents. For 1 < s < 2 an s-set fails to have a weak tangent (with an
appropriate definition) almost everywhere.

This area of research is a central part of what is now termed fractal geometry. This
paper will survey the vast range of mathematics related to projections of sets that has
developed over the past 60 years and which might be regarded as having its genesis in
Marstrand’s 1954 paper.

2 The potential-theoretic approach

By virtue of the fact that an orthogonal projection is a Lipschitz map, we invariably have
dimH projE ≤ min{m, dimHE} for every set E ⊂ Rn and projection proj : Rn → V onto
every m-dimensional subspace V , a fact that should be borne in mind throughout this
article. It is inequalities in the opposite direction that require more work to establish.
(However, a particularly straightforward situation is that for a connected set E ⊂ R2,
both dimHE ≥ 1 and dimH projE = 1 for projections onto lines in all directions with
at most one exception.) Throughout this article we will always assume that the sets E
being projected are Borel or analytic – pathological constructions show that dimension
ceases to have useful geometric properties if completely general sets are considered.

Marstrand’s proofs of his projection theorems were geometrically complicated and
not particularly conducive to extension or generalization. But in 1968 Kaufman [50]
gave new proofs of Theorem 1.1(i) using potential theory and of Theorem 1.1(ii) using
a Fourier transform method. This provided a rather more accessible approach, leading
eventually to many generalizations and extensions. Kaufman’s proofs depend on the
following characterization of Hausdorff dimension in terms of an energy integral.

dimHE = sup
{
s : E supports a positive finite measure

µ such that

∫ ∫
dµ(x)dµ(y)

|x− y|s
<∞

}
. (2.1)

Thus if E ⊂ R2 and s < dimHE where 0 < s < 1, we may find a measure µ supported

by E such that

∫ ∫
dµ(x)dµ(y)

|x− y|s
<∞. Write µθ for the projection of µ onto the line in

direction θ, so
∫∞
−∞ f(t)dµθ(t) =

∫
E
f(x · θ)dµ(x) for continuous f , where we identify θ

with a unit vector in the direction θ. Then∫ π

0

[ ∫ ∞
−∞

∫ ∞
−∞

dµθ(t)dµθ(u)

|t− u|s

]
dθ =

∫ π

0

[ ∫
E

∫
E

dµ(x)dµ(y)

|x · θ − y · θ|s

]
dθ (2.2)

=

∫
E

∫
E

∫ π

0

dθ

|ux−y · θ|s
dµ(x)dµ(y)

|x− y|s

≤ c

∫
E

∫
E

dµ(x)dµ(y)

|x− y|s
<∞
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where uw denotes the unit vector w/|w| and
∫ π
0
|ux−y · θ|−sdθ = c <∞.

Hence for almost all θ,

∫ ∞
−∞

∫ ∞
−∞

dµθ(t)dµθ(u)

|t− u|s
<∞, so, since µθ is supported by

projθE, we conclude from the characterization (2.1) that dimH projθE ≥ s. This is true
for all s < dimHE, so dimH projθE ≥ dimHE for almost all θ.

For the case where 1 < s < 2, a variant of this argument shows that∫ π

0

[ ∫ ∞
−∞

∫ ∞
−∞
|µ̂θ(u)|2

]
du <∞

where µ̂θ is the Fourier transform of µθ from which it follows that µθ is absolutely con-
tinuous with respect to Lebesgue measure with L2 density, so in particular has support
of positive Lebesgue measure.

In 1975 Mattila [57] used potential theoretic methods to obtain the natural exten-
sion of these theorems to projections from higher dimensional spaces to subspaces. For
1 ≤ m < n, and V an m-dimensional subspace of Rn, let projV : Rn → V . These
subspaces form the Grassmanian G(n,m), an m(n −m)-dimensional compact manifold
which carries a natural invariant measure, locally equivalent to m(n − m)-dimensional
Lebesgue measure.

Theorem 2.1. [57] Let E ⊂ Rn be a Borel or analytic set. Then, for almost all V ∈
G(n,m),

(i) dimH projVE = min{dimHE,m}.
(ii) Lm(projVE) > 0 if dimHE > m, where Lm denotes m-dimensional Lebesgue

measure on V .

3 Exceptional sets of projections

We can deduce rather more from Kaufman’s proof above. Let E ⊂ R2 and 0 < s <
dimHE < 1. Let T = {θ : dimH projθE < s}. If dimH T > s then it can be shown that
we may find a measure ν supported by T such that

∫
T
|u · θ|−sdν(θ) ≤ c < ∞ for every

unit vector u. If we integrate with respect to ν instead of Lebesgue measure in (2.2) we
still get a finite triple integral, and so for ν-almost all θ ∈ T the s-energy of µθ is finite
and dimH projθE ≥ s, a contradiction. It follows that if E ⊂ R2 and 0 ≤ s < dimHE < 1
then

dimH{θ : dimH projθE < s} ≤ s.

Thus the set of θ for which the projections have much smaller dimension than that of
the set is correspondingly small. Indeed, the dimension of a projection is rarely less than
half that of the set. As Bourgain [8] and Oberlin [63] showed, again when E ⊂ R2 and
dimHE < 1,

dimH{θ : dimH projθE < 1
2

dimHE} = 0.

For E ⊂ R2 and dimHE > 1, the greater the ‘excess dimension’ dimHE − 1 the
smaller the set of θ where Marstrand’s conclusion fails. To be more precise:

dimH{θ : L(projθE) = 0} ≤ 2− dimHE.
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This was first proved in [14] and all known proofs depend on Fourier transforms.
Not surprisingly there are higher dimensional analogues of these bounds on the di-

mensions of the exceptional set, that is the set of V ∈ G(n,m) for which the conclusions
of Theorem 2.1 fail. These are summerised in the following inequalities, written for com-
parison with m(n −m), the dimension of the Grassmanian G(n,m), see [57, 58, 59] for
more details.

Theorem 3.1. Let E ⊂ Rn be a Borel or analytic set.
(i) If 0 < s < dimHE ≤ m then

dimH{V ∈ G(n,m) : dimH projVE < s} ≤ m(n−m)− (m− s);

(ii) if dimHE ≥ m then

dimH{V ∈ G(n,m) : dimH projVE < s} ≤ m(n−m)− (dimHE − s);

(iii) if dimHE > m then

dimH{V ∈ G(n,m) : Lm(projVE) = 0} ≤ m(n−m)− (dimHE −m);

(iv) if dimHE > 2m then

dimH{V ∈ G(n,m) : projVE has empty interior} ≤ m(n−m)− (dimHE − 2m).

4 Sets of integer dimension

Marstrand was the first person to consider the effect of projection on the numerical value
of the dimension, but his paper also includes a few results on projections of s-sets in the
‘critical case’ where s = 1. This case had been studied in great detail somewhat earlier
by Besicovitch around the 1930s [5, 6, 7] who showed that 1-sets or ‘linearly-measurable
sets’ in the plane could be decomposed into a regular part and an irregular part, defined
in terms of local densities D(x) = limr→0H1(E ∩ B(x, r))/2r. The regular part consists
of those x where the limit D(x) exists with D(x) = 1, and the irregular part is formed by
the remaining points. Besicovitch showed that, to within a set of measure 0, the regular
part is ‘curve-like’, that is a subset of a countable collection of rectifiable curves. On the
other hand, the irregular part is ‘dust-like’ intersecting every rectifiable curve in length
0. Using intricate geometrical arguments, Besicovitch obtained the following projection
theorem.

Theorem 4.1. [7] Let E ⊂ R2 be a 1-set.
(i) If E is regular then L(projθE) > 0 for all θ ∈ [0, π) except perhaps for a single

value of θ.
(ii) If E is irregular then L(projθE) = 0 for almost all θ ∈ [0, π).

The natural higher dimensional versions of Theorem 4.1, with appropriate definitions
of regular and irregular sets, were obtained by Federer [27, 28].

If E is measurable and of σ-finite H1 measure, it follows from Theorem 4.1 that
L(projθE) is either 0 for almost all θ or positive for almost all θ, by decomposing E into
countably many 1-sets. However if dimHE = 1 but E is not σ-finite then strange things
can occur: we can find a set E whose projections are, to within Lebesgue measure 0,
anything we like.
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Theorem 4.2. [9, 15] For each θ ∈ [0, π) let Eθ be a given subset of the line through
the origin of R2 in direction θ, such that

⋃
0≤θ<π Eθ is plane Lebesgue measurable. Then

there exists a Borel set E ⊂ R2 such that, for almost all θ, L(Eθ4 projθE) = 0 where 4
denotes symmetric difference, in other words projθE differs from the prescribed set Eθ by
a set of negligible length.

Theorem 4.2 may be obtained by dualising a result of Davies [9] on covering a plane
set by lines without increasing its plane Lebesgue measure. It was proved directly, along
with the natural higher dimension analogues, in [15]. For projections from R3 to R2

this has become known as the ‘digital sundial theorem’: Given a subset EV of each 2-
dimensional subspace V of R3 (with a measurability condition), there exists a Borel set
E ⊂ R3 such that, for almost all subspaces V , L2(EV4projVE) = 0. Thus, in theory at
least, there is a set in space such that the shadow cast by the sun gives the thickened
digits of the time at any instant.

5 Packing dimensions

Packing measures and packing dimension were introduced by Tricot [83] in 1982 as a sort
of dual to their Hausdorff counterparts, see [17, 58]. Whilst packing measures require
an extra step in their definition, the gap of over sixty years between the two concepts
seems very surprising with hindsight. Nowadays, however, every problem that involves
Hausdorff dimension is almost routinely studied in terms of packing dimension as well.
Projection theorems are no exception, but the dimensional relationships turn out to be
more complicated in the packing dimension case.

Järvenpää [43] constructed compact sets E ⊂ Rn with dimPE taking any prescribed
value in (0, n] such that dimP projVE = dimPE

/(
1 + (1/m − 1/n) dimPE

)
for all V ∈

G(n,m). This is essentially the least value that can be obtained, that is

dimPE

1 + (1/m− 1/n) dimPE
≤ dimP projVE ≤ min{dimPE,m}

for almost all V ∈ G(n,m), see [19]. For packing dimensions of projections of measures,
rather than sets, this lower bound was refined to incorporate both the Hausdorff and
packing dimensions of the measure, see [23].

These inequalities raised the question of whether dimP projVE takes a common value
for almost all subspaces V and this was answered affirmatively with the introduction of
‘dimension profiles’ [20]. The packing dimension profile dims

PE of a set E ⊂ Rn reflects
how E appears when viewed in an s-dimensional setting. For s > 0 the s-dimensional
packing dimension profile of a measure µ on Rn with bounded support is defined in terms
of local densities of measures with respect to a kernel of the form min{1, rs/|x− y|s}:

dims
P µ = sup

{
t ≥ 0 : lim inf

r↘0
r−t
∫

min
{

1,
rs

|x− y|s
}
dµ(y) <∞ for µ-almost all x ∈ Rn

}
.

This leads to the s-dimensional packing dimension profile of a set E ⊂ Rn

dims
PE = sup

{
dims

P µ : µ is a finite compactly supported measure on E},
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see [20]. The profiles generalize packing dimensions, since dimn
PE = dimPE for E ⊂ Rn.

The profiles may also be expressed in terms of measures defined by weighted coverings,
see [38, 53].

Theorem 5.1. [20] Let E ⊂ Rn be a Borel or analytic set. Then, for almost all V ∈
G(n,m),

dimP projVE = dimm
P E.

There is a certain parallel with Hausdorff dimensions, where one might define a di-
mension profile simply as dims

HE = min{s, dimHE} which, by Marstrand’s theorem,
gives the almost sure Hausdorff dimension of projections onto s-dimensional subspaces.

As well as giving the almost sure packing dimension of the projections, the profiles
provide upper bounds for the dimension of the exceptional set of directions for which the
packing dimension falls below the almost sure value.

Since their introduction, packing dimension profiles have cropped up in other contexts,
notably to give the almost sure packing dimension of images of sets under fractional
Brownian motion [53, 84].

6 Projections in restricted directions

A general question that has been around for many years is under what circumstances we
can get projection theorems for projections onto families of lines or subspaces that form
proper subsets of V (n,m). For instance, if {θ(t) : t ∈ P} is a smooth curve or submanifold
of V (n,m) smoothly parameterized by a set P ⊂ Rk, then what can we conclude about
dimH projθ(t)E for Lk-almost all t ∈ P , where Lk is k-dimensional Lebsegue measure?

For a simple example, it follows easily from Theorem 3.1 (ii)-(iii) that if {θ(t) : 0 ≤
t ≤ 1} is a smoothly parameterized curve of directions in R3 (i.e. a curve in V (3, 1)), then
for almost all 0 ≤ t ≤ 1 we have dimH projθE ≥ min{dimHE − 1, 1} and if dimHE > 2
then L1(projθ(t)E) > 0, where projθ(t) denotes projection onto the line in direction θ(t).

The following lower bounds were obtained Järvenpää, Järvenpää and Keleti [44] for
parameterized families of projections from Rn to m-dimensional subspaces, see also [45].
For 0 < k < m(n−m) define the integers

p(l) = n−m−
⌊
k − l(n−m)

m− l

⌋
(l = 0, 1, . . . ,m− 1),

where the ‘floor’ symbol ‘bxc’ denotes the largest integer no greater than x.

Theorem 6.1. [44] Let P ⊂ Rk be an open parameter set and let E ⊂ Rn be a Borel
or analytic set. Let {V (t) ⊂ G(n,m) : t ∈ P} be a family of subspaces such that V is
C1 with the derivative DtV (t) injective for all t ∈ P . Then, for all l = 0, 1, . . . ,m and
Lk-almost all t ∈ P ,

dimH projV (t)E ≥
{

dimHE − p(l) if p(l) + l ≤ dimHE ≤ p(l) + l + 1
l + 1 if p(l) + l + 1 ≤ dimHE ≤ p(l + 1) + l + 1

.

Moreover, if dimHE > p(m− 1) +m then Lm(projV (t)E) > 0 for Lk-almost all t ∈ P .
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These are the best possible bounds for general parameterized families of projections.
The same paper [44] includes generalizations of these results to smoothly parameterized
families of C2-mappings.

Better lower bounds may be obtained if there is curvature in the mapping s 7→ V (s).
This is a difficult area, and work to date mainly concerns projections from R3 to lines
and planes. Let θ : (0, 1)→ S2 be a family of directions given by a C3-function θ, where
S2 is the 2-sphere embedded in R3. We say that the curve of directions is non-degenerate
if

span {θ(t), θ′(t), θ′′(t)} = R3 for all t ∈ (0, 1).

The following theorem was proved by recently by Fässler and Orponen [26].

Theorem 6.2. [26] Let E ⊂ R3 be a Borel or analytic set, let θ(t) be a non-degenerate
family of directions, and let projθ(t) denote projection onto the line in direction θ. Then,
for almost all t ∈ (0, 1),

dimH projθ(t)E ≥ min{dimHE,
1
2
}. (6.1)

It is conjectured that 1
2

can be replaced by 1 in (6.1) and this is verified where E is a
self-similar sets without rotations in [26], a paper that also contains estimates for packing
dimensions of projections.

The following bounds have been established for projections onto planes in R3 in the
non-degenerate case. The conjectured lower bound is min{dimHE, 2} and the bound
min{dimHE, 1} for all values of dimHE was obtained in [26]. The further improvements
stated below come from Fourier restriction methods [65].

Theorem 6.3. [26, 65] Let E ⊂ R3 be a Borel or analytic set, let θ(t) be a non-degenerate
family of directions, and let projVθ(t) denote projection onto the plane perpendicular to
direction θ. Then, for almost all t ∈ (0, 1),

dimH projVθ(t)E ≥


min{dimHE, 1} if 0 ≤ dimHE ≤ 4

3
3
4

dimHE if 4
3
≤ dimHE ≤ 2

min{dimHE − 1
2
, 2} if 2 ≤ dimHE ≤ 3

. (6.2)

Orponen [71] also showed that there exist numbers σ(λ) > 1 defined for λ > 1, and
increasing with λ, such that if dimHE > 1 then dimH projVθ(t)E ≥ σ(dimHE) for almost
all t .

Estimates for packing dimensions of projections may be found in [26]. The introduc-
tion of the paper [71] provides a recent overview of this area.

7 Generalized projections

The projection theorems are a special case of much more general results. The essential
property in Kaufman’s proof in Section 2 is that the integral over the parameter θ sat-
isfies

∫
|projθx − projθy|−sdθ ≤ c|x − y|−s; such a condition can hold for many other

parameterized families of mappings as well as for projθ.
Thus for X ⊂ Rn a compact domain, consider a family of maps πθ : X → Rm for θ in

an open parameter set P ⊂ Rk. Assume that the derivatives with respect to θ, Dθπθ(x)
exist and are bounded.

8



Let

Φθ(x, y) =
|πθ(x)− πθ(y)|
|x− y|

.

The family {πθ : θ ∈ P} is transversal if there is a constant c such that

|Φθ(x, y)| ≤ c =⇒ det
(
DθΦθ(x, y)(DθΦθ(x, y))T

)
≥ c (7.1)

for θ ∈ P and x, y ∈ X, where Dθ denotes the derivative with respect to θ and T
denotes the transpose of a matrix. This condition implies that if θ ∈ P is such that
Φθ(x, y) is small, then Φθ(x, y) must be varying reasonably fast as θ changes in a direction
perpendicular to the kernel of the derivative matrix.

By generalizing beyond recognition earlier arguments involving potential theory and
Fourier transforms, Peres and Schlag [74] obtained theorems such as the following for a
transversal family of generalized projections; compare Theorem 3.1.

Theorem 7.1. [74] For X ⊂ Rn and P ⊂ Rk, let {πθ : X → Rm : θ ∈ P} be a transversal
family and let E ⊂ X be a Borel set.
(i) If 0 < t < dimHE ≤ m then

dimH{θ ∈ P : dimH πθE < t} ≤ k − (m− t),

(ii) if dimHE > m then

dimH{θ ∈ P : dimH πθE < t} ≤ k − (dimHE − t),

(iii) if dimHE > m then

dimH{θ ∈ P : Lm(πθE) = 0} ≤ k − (dimHE −m),

(iv) if dimHE > 2m then

dimH{θ ∈ P : πθE has empty interior} ≤ n− dimHE + 2.

This powerful result has been applied to many situations, including Bernoulli convo-
lutions, sums of Cantor sets and pinned distance sets, see [74]. For a recent treatment of
transversality, see [62].

Leikas [55] has used transversality to extend the packing dimension conclusions of
Section 5 to families of mappings between Riemannian manifolds where the dimension
profiles again play a central role.

8 Projections of self-similar and self-affine sets

One of the difficulties with the projection theorems is that they tell us nothing about the
dimension or measure of the projection in any given direction. There has been consider-
able recent interest in examining the dimensions of projections in specific directions for
particular sets or classes of sets, and especially in finding sets for which the conclusions of
Marstrand’s theorems are valid for all, or virtually all, directions. Of particular interest
are self-similar sets.
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Recall that an iterated function system (IFS) is a family of contractions {f1, . . . , fk}
with fi : Rn → Rn. An IFS determines a unique non-empty compact E ⊂ Rd such that

E =
k⋃
i=1

fi(E), (8.1)

called the attractor of the IFS, see [17, 42]. If the fi are all similarities, that is of the
form

fi(x) = riOi(x) + ai, (8.2)

where 0 < ri < 1 is the contraction ratio, Oi is an orthonormal map, i.e. a rotation or
reflection, and ai is a translation, then E is termed self-similar. An IFS of similarities
satisfies the strong separation condition (SSC) if the union (8.1) is disjoint, and the open
set condition (OSC) if there is a non-empty open set U such that ∪ki=1fi(U) ⊂ U with
this union disjoint. If either SSC or OSC hold then dimHE = s, where s is the similarity
dimension given by

∑k
i=1 r

s
i = 1, where ri is the similarity ratio of fi, and moreover

0 < Hs(E) < ∞. The rotation group G = 〈O1, . . . , Ok〉 generated by the orthonormal
components of the similarities plays a crucial role in the behaviour of the projections of
self-similar sets.

It is easy to construct self-similar sets with a finite rotation group G for which the
conclusions of Marstrand’s theorem fail in certain directions. For example, let f1, . . . , f4
be homotheties (that is similarities with Oi the identity in (8.2)) of ratio 0 < r < 1

4

that map the unit square S into itself, each fi fixing one of the four corners. Then
dimHE = − log 4/ log r, but the projections of E onto the sides of the square have
dimension − log 2/ log r and onto the diagonals of S have dimension − log 3/ log r, a
consequence of the alignment of the component squares fi(S) under projection. There is
a similar reduction in the dimension of projections in directions θ whenever projθ(fi1 ◦
· · · ◦ fik(S)) = projθ(fj1 ◦ · · · ◦ fjk(S)) for distinct words i1, . . . , ik and j1, . . . , jk.

Kenyon [52] conducted a detailed investigation of the projections of the 1-dimensional
Sierpiński gasket E ⊂ R2, that is the self-similar set defined by the similarities

f1(x, y) = (1
3
x, 1

3
y), f2(x, y) = (1

3
x+ 2

3
, 1
3
y), f3(x, y) = (1

3
x, 1

3
y + 2

3
).

He showed that the projection of E onto a line making an angle to the x-axis with tangent
p/q with has dimension strictly less than 1 if p+ q 6≡ 0 (mod 3), but if p+ q ≡ 0 (mod 3)
then the projection has non-empty interior. For irrational directions he proved that the
projections have Lebesgue measure 0 and Hochman [34] complemented this by showing
that they nevertheless have Hausdorff dimension 1.

In fact, when the rotation group is finite, there are always some projections for which
direct overlapping of the projection of components of the usual iterated construction leads
to measure 0, as the following theorem of Farkas shows.

Theorem 8.1. [25] If E ⊂ Rn is self-similar with finite rotation group G and similarity
dimension s, then dimH projVE < s for some V ∈ G(n,m). In particular if E satisfies
OSC and 0 < dimHE < m then dimH projVE < dimHE for some V .

A rather different situation occurs if the IFS has dense rotations, that is the rotation
group G is dense in the full group of rotations SO(n,R) or in the group of isometries
O(n,R). Note that an IFS of similarities of the plane has dense rotations if at least one
of the rotations in the group is an irrational multiple of π.
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Theorem 8.2. [74, 35] If E ⊂ Rn is self-similar with dense rotations then

dimH projVE = min{dimHE,m} for all V ∈ G(n,m). (8.3)

More generally, dimH g(E) = min{dimHE,m} for all C1 mappings g : E → Rm without
singular points, that is maps with non-singular derivative matrix.

Peres and Shmerkin [74] proved (8.3) in the plane without requiring any separation
condition on the IFS. To show this they set up a discrete version of Marstrand’s projection
theorem to construct a tree of intervals in the subspace (line) V followed by an application
of Weyl’s equidistribution theorem. Hochman and Shmerkin [35] proved the theorem in
higher dimensions, including the extension to C1 mappings, for E satisfying the open set
condition. Their proof uses the CP-chains of Furstenberg [31, 32], see also [33], and has
three main ingredients: the lower semicontinuity of the expected Hausdorff dimension of
the projection of a measure with respect to its ‘micromeasures’, Marstrand’s projection
theorem, and the invariance of the dimension of projections under the action of the
rotation group.

That the open set condition is not essential follows since, for all ε > 0, we can use a
Vitali argument to set up a new IFS, consisting of compositions of the fi, that satisfies
SSC, with attractor E ′ ⊂ E such that dimHE

′ > dimHE− ε; we can also ensure that the
new IFS has dense rotations if the original one has, see [21, 25, 74, 69].

It is also natural to ask about the Lebesgue measures of the projections of self-similar
sets. We have seen examples of self-similar sets E of Hausdorff dimension s < m with
finite rotation group and satisfying SSC such that Hs(projVE) is positive for some sub-
spaces V and 0 for others. For dense rotations, the situation is clear cut: the following
theorem was proved by Eroğlu [13] in the plane case for projections when OSC is satisfied,
and for more general mappings with the separation condition removed by Farkas [25].

Theorem 8.3. [25] Let E ⊂ Rn be the self-similar attractor of an IFS with dense rota-
tions, with dimHE = s. Then Hs(projVE) = 0 for all V ∈ G(n,m). More generally,
Hs(g(E)) = 0 for all C1 mappings g : E → Rn without singular points.

From Theorem 8.2, if dimHE > m then in the dense rotation case dimH projVE = m
for all V ∈ G(n,m), but we might hope from the second part of Marstrand’s theorem
that the projections also have positive Lebesgue measure. Shmerkin and Solomyak showed
that this is very nearly so in the plane.

Theorem 8.4. [80] Let E ⊂ R2 be the self-similar attractor of an IFS with dense rotations
with 1 < dimHE < 2. Then L1(projθE) > 0 for all θ except for a set of θ of Hausdorff
dimension 0.

The proof depends on careful estimation of the decay of the Fourier transforms of
projections of a measure supported by E. The method can be traced back to a study of
Bernoulli convolutions by Erdős [12], which Kahane [49] pointed out gave an exceptional
set of Hausdorff dimension 0 rather than just Lebesgue measure 0, see [73].

The attractor of an IFS is self-affine if (8.1) holds for affine contractions {f1, . . . , fk}.
A plane self-affine set is a carpet if the contractions are of the form

fi(x, y) = (aix+ ci, biy + di), (8.4)
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i.e. affine transformations that leave the horizontal and vertical directions invariant. For
many self-affine carpets the dimensions of the projections behave well except in directions
parallel to the axes.

Figure 2: A Bedford McMullen self-affine carpet obtained by repeated substitution of
the left-hand pattern in itself.

Theorem 8.5. [30] Let E ⊂ R2 be a self-affine carpet in the Bedford-McMullen, Gatzouras-
Lalley or Barański class. If the IFS is of irrational type, then dimH projθE = min{dimHE, 1}
for all θ except possibly θ = 0 and θ = 1

2
π.

For definitions and details of these different classes of carpets, see [30]. The IFS is of
irrational type if, roughly speaking, log ai/ log bi is irrational for at least one of the fi in
(8.4).

Along similar lines, for an integer n ≥ 2, let Tn : [0, 1] → [0, 1] (where 0 and 1 are
identified) be given by Tn(x) = nx (mod1). In the 1960s Furstenberg conjectured that if
E and F are closed sets invariant under T2 and T3 respectively, then dimH projθ(E × F )
should equal min{dimH(E × F ), 1} for all θ except possibly θ = 0 and θ = 1

2
π. This

was proved by Hochman and Shmerkin [35] along with more general results such as the
following.

Theorem 8.6. [35] Let E and F be closed subsets of [0, 1] invariant under Tm and Tn
respectively, where m,n are not powers of the same integer. Then dimH projθ(E × F ) =
min{dimH(E × F ), 1} for all θ except possibly θ = 0 and θ = 1

2
π.

Projection properties of self-affine measures underpin this work and there are measure
analogues of these theorems, see [29, 30, 35].

9 Projections of random sets

Fractal percolation provides a natural method of generating statistically self-similar frac-
tals, with the same random process determining the form of the fractals at both small
and large scales.

Best known is Mandelbrot percolation, based on repeated decomposition of squares
into smaller subsquares from which a subset is selected at random. Let D denote the unit
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square in R2. Fix an integer M ≥ 2 and a probability 0 < p < 1. We divide D into M2

closed subsquares of side 1/M in the obvious way, and retain each subsquare indepen-
dently with probability p to get a set D1 formed as a union of the retained subsquares.
We repeat this process with the squares of D1, dividing each into M2 subsquares of side
1/M2 and choosing each with probability p to get a set D2, and so on. This leads to the
random percolation set E = ∩∞k=0Dk. If p > M−2 then there is a positive probability of
non-extinction, i.e. that E 6= ∅, conditional on which dimHE = 2 + log p/ logM almost
surely.

The topological properties of Mandelbrot percolation have been studied extensively,
see [11, 17, 78] for surveys. In particular there is a critical probability pc with 1/M < pc <
1 such that if p > pc then, conditional on non-extinction, E contains many connected
components, so projections onto all lines automatically have positive Lebesgue measure.
If p ≤ pc the percolation set E is totally disconnected, and Marstrand’s theorems provide
information on projections of E in almost all directions. However, Rams and Simon
[76, 77, 78] recently showed using a careful geometrical analysis that, conditional on
E 6= ∅, almost surely the conclusions of Theorem 1.1 hold for all projections.

Theorem 9.1. [76] Let E be the random set obtained by the Mandelbrot percolation
process in the plane based on subdivision of squares into M2 subsquares, each square being
retained with probability p > 1/M2. Then, with positive probability E 6= ∅, conditional on
which:

(i) dimH projθE = min{dimHE, 1} for all θ ∈ [0, π),

(ii) if p > 1/M then for all θ ∈ [0, π), projθE contains an interval and in particular
L(projθE) > 0.

The natural higher dimensional analogues of this theorem for projections onto all
V ∈ G(n,m) are also valid, see [82]. There are also versions of this result when the
squares are selected using certain other probability distributions.

Statistically self-similar subsets of any self-similar set may be constructed using a sim-
ilar percolation process. Let {f1, . . . , fm} be an IFS on Rn given by (8.2) and let E0 be
its attractor. Percolation on E0 may be performed by retaining or deleting components
of the natural hierarchical construction of E in a random but self-similar manner. Let
0 < p < 1 and let D ⊂ Rn be a non-empty compact set such that fi(D) ⊂ D for all i. We
select a subfamily of the sets {f1(D), . . . , fm(D)} where each fi(D) is selected indepen-
dently with probability p and write D1 for the union of the selected sets. Then, for each
selected fi(D), we choose sets from {fif1(D), . . . , fifm(D)} independently with probabil-
ity p independently for each i, with the union of these sets comprising D2. Continuing in
this way, we get a nested hierarchy D ⊃ D1 ⊃ D2 ⊃ · · · of random compact sets, where
Dk is the union of the components remaining at the kth stage. The random percolation
set is E = ∩∞k=1Dk, see Figure 3. When the underlying IFS has dense rotations, Falconer
and Jin [21] extended the ergodic theoretic methods of [35] to random cascade measures
to obtain a random analogue of Theorem 8.2.

Theorem 9.2. [21] Let E0 ⊂ Rn be a self-similar set with dense rotation group and let
E ⊂ E0 be the percolation set described above. If p > 1/m there is positive probability
that E 6= ∅, conditional on which,

dimH projVE = min{dimHE,m} for all V ∈ G(n,m).

13



Figure 3: A self-similar set with dense rotations and a subset obtained by the
percolation process.

More generally, conditional on E 6= ∅, dimH g(E) = min{dimHE,m} for all C1 mappings
g : E → Rm without singular points.

Recently, Shmerkin and Suomala [81] have introduced a very general theory showing
that for a class of random measures, termed spatially independent martingales, very
strong results hold for dimensions of projections and sections of the measures, and thus of
underlying sets, with the conclusions holding almost surely for projections in all directions
or onto all subspaces. Such conclusions are obtained by showing that almost surely the
total measures of intersections of the random measures with parameterized deterministic
families of measures are absolutely continuous with respect to the parameter. Spatially
independent measures include measures based on fractal percolation, random cascades
and random cutout models.

10 Further variations and applications of projections

This discussion has covered just a few of the numerous results which may be traced back
to Marstrand’s pioneering work. We end with an even briefer mention of some further
applications, with one or two references indicating where further information may be
found.

Visible parts of sets. The visible part VisθE of a compact set E ⊂ R2 from direction θ is
the set of x ∈ E such that the half-line from x in direction θ intersects E in the single
point x; thus VisθE may be thought of as the part of E that can be ‘seen from infinity’
in direction θ. It is immediate from Marstrand’s Theorem 1.1 that, for almost all θ,

dimH VisθE = dimHE if dimHE ≤ 1 and dimH VisθE ≥ 1 if dimHE ≥ 1.

It has been conjectured that if dimHE ≥ 1 then dimH VisθE = 1 for almost all θ, but
so far this has only been established for rather specific classes of E. The conjecture
is easily verified if E is the graph of a function (the only exceptional direction being
perpendicular to the x-axis), see [48]. It is also known for quasi-circles [48] and for
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Mandelbrot percolation sets [1]. For self-similar sets, it holds if E is connected and the
rotation group is finite [1], and also if E satisfies the open set condition for a convex open
set such that projθE is an interval for all θ [18] (in this case E need not be connected).
The analogous conjecture in higher dimensions, that the dimension of the visible part of
a set E ⊂ Rn equals min{dimHE, n− 1}, is also unresolved if dimHE > n− 1.

Projections in infinite dimensional spaces. Infinite-dimensional dynamical systems may
have finite dimensional attractors. When they are studied experimentally what is ob-
served is essentially a projection or ‘embedding’ of the attractor into Euclidean space
and infinite-dimensional versions of the projection theorems can relate these projections
to the original attractor. Let E be a compact subset of a Banach space X with box-
counting (or Minkowski) dimension d. Hunt and Kaloshin [41] show that for almost
every projection or bounded linear function π : X → Rm such that m > 2d,

m− 2d

m(1 + d)
dimHE ≤ dimH π(E) ≤ dimHE.

Here ‘almost every’ is interpreted in the sense of prevalence, which is a measure-theoretic
way of defining sparse and full sets for infinite-dimensional spaces. The book by Robinson
[79] provides a recent treatment of this important area.

Projections in Heisenberg groups. The Heisenberg group Hn is the connected and simply
connected nilpotent Lie group of step 2 and dimension 2n+ 1 with 1-dimensional center,
which may be identified topologically with R2n+1. However, the Heisenberg metric dH ,
which is invariant under the group action, is very different from the Euclidean metric,
and in particular the Hausdorff dimension of subsets of Hn depends on which metric is
used in the definition. Despite the lack of isotropy, there is enough geometric structure
to enable families of projections to be defined, and it is possible to get bounds for the
dimensions of certain projections of a Borel set E in terms of the dimension of E, where
the dimensions are defined with respect to dH , see [3, 4, 61].

Sections of sets. Dimensions of sections or slices of sets, which go hand in hand with
dimensions of projections, also featured in Marstrand’s 1954 paper [56]. He showed
essentially that, if E ⊂ R2 is a Borel or analytic set of Hausdorff dimension s > 1, then
for almost all directions θ, dimH proj−1θ x ≤ s− 1 for almost all x ∈ Vθ, with equality for a
set of x ∈ Vθ of positive Lebesgue measure. Here projθ : R2 → Vθ is orthogonal projection
onto Vθ, the line in direction θ. The natural higher dimensional analogues were obtained
by Mattila [57, 58, 60] using potential theoretic arguments. Most of the aspects discussed
above for projections have been investigated for sections, including packing dimensions
[23, 47], exceptional directions [70], self-similar sets [22, 31] and fractal percolation sets
[22, 81].

Projections of measures. For µ a Borel measure on Rn with compact support such that
0 < µ(Rn) < ∞, the projection projV µ of µ onto a subspace V ∈ G(n,m) is defined in
the natural way, that is by (projV µ)(A) = µ{x ∈ Rn : πV (x) ∈ A} for Borel sets A or
equivalently by

∫
f(t)d(projV µ)(t) =

∫
projV (x)dµ(x) for continuous f . The support of

projV µ is the projection onto V of the support of µ, so it is not surprising that many
of the results for projection of sets have analogues for projection of measures. Indeed
many projection results for sets are obtained by putting a suitable measure on the set
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and examining projections of the measure, as in Kaufman’s proof in Section 2. There
are many ways of quantifying the fine structure of measures, and the way these behave
under projections have been investigated in many cases.

For example, the lower pointwise or local dimension of a Borel probability measure µ
on Rn at x ∈ Rn is given by dimµ(x) = limr→0 log µ(B(x, r))/ log r, with a corresponding
definition taking the upper limit for the upper pointwise dimension . Then, for almost all
every subspace V ∈ G(n,m) and µ-almost all x ∈ Rn,

dimµ(projV x) = min{dimµ(x),m} and dimµ(projV x) = min{dimµ(x),m},

see [24, 35, 39, 40, 85]. The (lower) Hausdorff dimension of a measure µ is defined as
dimH µ = inf{dimHA : µ(A) > 0}. It follows easily from the projection properties of
pointwise dimension that

dimH(projV µ) = min{dimH µ(x),m}.

The Lq-dimensions of projections are examined in [40], for the multifractal spectrum see
[2, 66, 67], and for packing dimension aspects see [23].

For a special case of projection of measures, let M be a compact Riemann surface and
proj : T 1M →M be the natural projection from the unit tangent bundle T 1M to M . Let
µ be a probability measure on T 1M that is invariant under the geodesic flow on T 1M .
Ledrappier and Lindenstrauss [54] showed that if dimH µ ≤ 2 then dimH projµ = dimH µ,
and if dimH µ > 2 then projµ is absolutely continuous. However, the analogous conclusion
fails if the base manifold has dimension 3 or more, see [46].

11 Conclusion

If this article does nothing else, it should demonstrate just how much of fractal geometry
has its roots in Marstrand’s 1954 paper. If further evidence is needed, there are hundreds
of citations of the paper in Math Sci Net and Google Scholar, despite these indexes only
including relatively recent references.

This survey of projection results has been brief and far from exhaustive and there are
many more related papers. For a both broader and more detailed coverage of various
aspects of projections, the books by Falconer [16, 17] and Mattila [58, 62] and the survey
articles by Mattila [59, 60, 61] may be helpful.
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[37] R. Hovila, E. Järvanpää, M. Järvanpää and F. Ledrappier, Besicovitch-Federer pro-
jection theorem and geodesic flows on Riemann surfaces, Geom. Dedicata 161 (2012),
51–61.

18

http://arxiv.org/abs/1409.1882
http://arxiv.org/abs/1307.2841


[38] J.D. Howroyd. Box and packing dimensions of projections and dimension profiles,
Math. Proc. Cambridge Philos. Soc. 130 (2001), 135–160.

[39] X. Hu and S.J. Taylor, Fractal properties of products and projections of measures
in Rd, Math. Proc. Cambridge Philos. Soc. 115 (1994), 527–544.

[40] B.R. Hunt and Y. Kaloshin, How projections affect the dimension spectrum of fractal
measures, Nonlinearity 10 (1997), 1031–1046.

[41] B.R. Hunt and Y. Kaloshin, Regularity of embeddings of infinite-dimensional fractal
sets into finite-dimensional spaces, Nonlinearity 12 (2008), 1263–1275.

[42] J.E. Hutchinson. Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), 713–
747.
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[82] K. Simon and L. Vágó. Projections of Mandelbrot percolation in higher dimensions,
to appear Ergodic Theory Dynam. Systems. arXiv:1407.2225 (2014).

[83] C Tricot. Two definitions of fractional dimension, Math. Proc. Cambridge Philos.
Soc. 91 (1982), 57–74.

[84] Y. Xiao. Packing dimension of the image of fractional Brownian motion, Statist.
Probab. Lett. 333 (1997), 379–387.

[85] M. Zähle. The average fractal dimension and projections of measures and sets in Rn,
Fractals 3 (1995), 747.

21

http://arxiv.org/abs/1306.3844
http://arxiv.org/abs/1406.0204
http://arxiv.org/abs/1409.6707
http://arxiv.org/abs/1407.2225

	1 Marstrand's 1954 paper
	2 The potential-theoretic approach
	3 Exceptional sets of projections
	4 Sets of integer dimension
	5 Packing dimensions
	6 Projections in restricted directions
	7 Generalized projections
	8 Projections of self-similar and self-affine sets
	9 Projections of random sets
	10 Further variations and applications of projections
	11 Conclusion

