55,030 research outputs found

    Production life of tube swimmers

    Get PDF
    Two humped mandrels, called swimmers, are used in the special tube drawing process of Bundy Tubing Company to size internal diameters of tubes formed from double-wrapped steel strip. The aim of this study was to determine key factors to promote increased life of swimmers which currently fail mostly by metal pick-up. There was insufficient data to build mathematical models for swimmer failure; it is recommended that systematic data collection take place using statistical quality control principles

    The Serviceman and Vicarious Liability

    Get PDF

    Constitutive relationships for anisotropic high-temperature alloys

    Get PDF
    A constitutive theory is presented for representing the anisotropic viscoplastic behavior of high temperature alloys that posses directional properties resulting from controlled grain growth or solidification. The theory is an extension of a viscoplastic model that was applied in structural analyses involving isotropic metals. Anisotropy is introduced through the definition of a vector field that identifies a preferential (solidification) direction at each material point. Following the development of a full multiaxial theory, application is made to homogeneously stressed elements in pure shear and to a uniaxially stressed rectangular block in plane stress with the stress direction oriented at an arbitrary angle with the material direction. It is shown that an additional material parameter introduced to characterize the degree of anisotropy can be determined on the basis of simple creep tests

    A continuous damage model based on stepwise-stress creep rupture tests

    Get PDF
    A creep damage accumulation model is presented that makes use of the Kachanov damage rate concept with a provision accounting for damage that results from a variable stress history. This is accomplished through the introduction of an additional term in the Kachanov rate equation that is linear in the stress rate. Specification of the material functions and parameters in the model requires two types of constituting a data base: (1) standard constant-stress creep rupture tests, and (2) a sequence of two-step creep rupture tests

    A continuum deformation theory for metal-matrix composites at high temperature

    Get PDF
    A continuum theory is presented for representing the high temperature, time dependent, hereditary deformation behavior of metallic composites that can be idealized as pseudohomogeneous continua with locally definable directional characteristics. Homogenization of textured materials (molecular, granular, fibrous) and applicability of continuum mechanics in structural applications depends on characteristic body dimensions, the severity of gradients (stress, temperature, etc.) in the structure and the relative size of the internal structure (cell size) of the material. The point of view taken here is that the composite is a material in its own right, with its own properties that can be measured and specified for the composite as a whole

    Unified constitutive model development for metal matrix composites at high temperature

    Get PDF
    Structural alloys used in high temperature applications exhibit complex thermomechanical behavior that is time dependent and hereditary. Recent attention is being focused on metal matrix composite materials for high temperature applications where they exhibit all the complexities of conventional alloys and their strong anisotropy adds further complexities. Here, a proven constitutive model for isotropic materials in which the inelastic strain rate and internal state are expressible as gradients of a dissipation potential is taken to depend on invariants that reflect local transverse isotropy. Applications illustrate the capability of the theory of representing the time dependent, hereditary, anisotropic behavior typical of these materials at high temperature

    Constitutive Equations for Use in Design Analyses of Long-life Elevated Temperature Components

    Get PDF
    Design analysis needs and procedures relative to elevated temperature components in liquid metal fast breeder reactor (LMFBR) system were examined. The effects of the thermal transients on the pressure boundary components are enhanced by the excellent heat transfer properties of the liquid sodium coolant. Design criteria for high temperature nuclear reactor components recognize the potential occurrence of inelastic structural response. Specifically, criteria and limits were developed which reflect a recognition of this potential and employ design by analysis concepts that requires that inelastic (elastic-plastic and creep) analyses be performed. Constitutive equations to represent multiaxial time-dependent responses of LMFBR alloys are established. The development of equations applicable under cyclic loading conditions are outlined

    High-temperature constitutive modeling

    Get PDF
    Thermomechanical service conditions for high-temperature levels, thermal transients, and mechanical loads severe enough to cause measurable inelastic deformation are studied. Structural analysis in support of the design of high-temperature components depends strongly on accurate mathematical representations of the nonlinear, hereditary, inelastic behavior of structural alloys at high temperature, particularly in the relatively small strain range. Progress is discussed in the following areas: multiaxial experimentation to provide a basis for high-temperature multiaxial constitutive relationships; nonisothermal testing and theoretical development toward a complete thermomechanically path dependent formulation of viscoplasticity; and development of viscoplastic constitutive model accounting for initial anisotropy

    On-chip inverted emulsion method for fast giant vesicle production, handling, and analysis

    No full text
    Liposomes and giant unilamellar vesicles (GUVs) in particular are excellent compartments for constructing artificial cells. Traditionally, their use requires bench-top vesicle growth, followed by experimentation under a microscope. Such steps are time-consuming and can lead to loss of vesicles when they are transferred to an observation chamber. To overcome these issues, we present an integrated microfluidic chip which combines GUV formation, trapping, and multiple separate experiments in the same device. First, we optimized the buffer conditions to maximize both the yield and the subsequent trapping of the vesicles in micro-posts. Captured GUVs were monodisperse with specific size of 18 ± 4 µm in diameter. Next, we introduce a two-layer design with integrated valves which allows fast solution exchange in less than 20 s and on separate sub-populations of the trapped vesicles. We demonstrate that multiple experiments can be performed in a single chip with both membrane transport and permeabilization assays. In conclusion, we have developed a versatile all-in-one microfluidic chip with capabilities to produce and perform multiple experiments on a single batch of vesicles using low sample volumes. We expect this device will be highly advantageous for bottom-up synthetic biology where rapid encapsulation and visualization is required for enzymatic reactions
    corecore