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CONSTITUTIVE RELATIONSHIPS FOR ANISOTROPIC HIGH-TEMPERATURE ALLOYS

D. N. Robinson*
National Aeronautics and Space Administration

Lewis Research Center
Cleveland, Ohio 44135

SUMMAR?

A constitutive theory is presented for representing the anisotropic v:s-
coplastic behavior of high-temperature alloys that possess directional proper-
ties resulting from controlled grain growth or solidification. The theory is
an extensioto of a viscoplastic model that has been applied in structural analy-
ses involving isotropic metals. Anisotropy is introduced through the defini-
tion of a vector field that identifies a preferential (solidification) direc-
tion at each material point. Following the development of a full multiaxial
theory, application is made to homogeneously stressed elements in pure shear
and to a uniaxially stressed rectangular block in plane stress with the stress
direction oriented at an arbitrary angle with the material direction. It is
shown that an additional material parameter introduced to characterize the
degree of anisotropy can be determined on the basis of simple creep tests.

INTRODUCTION

The need for greater efficiency in aircraft engines places increasing
demands on the high-temperature structural alloys used for engine components.
As higher operating temperatures are sought, advanced materials are being de-
veloped to meet these increased demands. Good examples are the single crystal
(SC) and directionally solidified (DS) polycrystalline materials finding ap-
plication as turbine airfoil components. An advantage of these materials over
conventionally cast alloys is their increased strength (e.g.. creep and creep-
rupture strength, yield strength, etc.) in a preferential grain growth) di-
rection, which in the case of a turbine blade can be advantageously oriented
radially (centrifugally). Improved creep and creep-fatigue properties result
as well as reduced susceptibility to grain boundary corrosion and oxidation.

The directional properties of SC or DS metals render them highly aniso-
tropic relative to conventional alloys. This introduces additional complexity
in understanding and mathematically representing their mechanical behavior
over and above the already enormous complexities associated with elevated
temperature.

Here, the unified constitutive model of Robinson (refs. 1 and 2) that has
found application in representing important behavioral features of high-
temperature isotropic metals is extended to account for the effects of aniso-
tropy. Each material point is taken to have a uniquely identifiable direction
designated by a vector. An extended material body is thus treated as being
locally transversely anisotropic although the preferential direction may vary
from point to point as represented by a vector field. It is believed that
this relatively simple model captures the essence of anisotropy as induced by
directional grain growth and solidification without undue complication.

— *Un_fv_e_rs7Ty of Akron, Akron, Ohio and National Research Council - NASA
Research Associate.

3

I



The isotropic, isothermal form of the Robinson viscoplastic theory is
first discussed with emphasis on its derivability from a potential function.
Full isotropy is treated by taxing the applied and internal stress dependence
of the potential functi m in terms of the principal invariants of the stress
tensors. The txtension to anisotropy is made by repiacing the principal in-
variants with another set of stress invariants that reflect the appropriate
material symmetry.

Following the development of the full multiaxial theory, application is
made to simple states of shear stress oriented transverse to and along the
preferential material Direction. A final application is made to a uniaxially
stressed rectangular block of material in plane stress with a uniformly orien-
ted material direction taken at an arbitrary angle with the direction of
stress.

SYMBOLS

a il	 components of deviatoric internal stress

d i	components of unit vector

F	 scalar function of stress

f	 material function

G	 scalar function of stress

g	 material function

gh	hardening function

gr	recovery function

H	 material constant

h	 hardening function

I i	invariants of effective stress

,i	invariants of internal stress

J i	principal invariants of effective stress

4i	
principal invariants of internal stress

K	 threshold transverse shear stress

K 
	 threshold longitudinal shear stress

m	 material constant

n	 material constant

R	 material constant

s	 internal stress in transverse shear

I	 internal stress in longitudinal shear

Sil	
components of applied deviatoric stress

x i	coordinate directions

o	 uniaxial internal stress
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e	 material constant	 =

Y	 shear strain rate	 ORIGINAL PAGE 19

a
ij	

Kronecker delta	
OF POOR QUALITY

e	 uniaxial inelastic strain rate

ij components of inelastic strain rate

a	 potential function

a	 uniaxial normal stress

aij	 components of applied stress

T	 shear stress

i ij	 components of effective stress

angle between x 1 axis and stress direction

N	 material constant

THE ISOTROPIC VISCOPLASTIC MODEL

The flow and evolutionary equations in the Robinson model are taken to be
derivable from a potential function a of the applied and internal stress.
The components of these stress tensors are denoted by aij and -ij, respec-
tively. Thus, we have

a - a(a ij , aij ).
	

(1)

For the sake of simplicity, the present development is restricted to iso-
thermal conditions. Extension to nonisothermal conditions follows the devel-
opment presented in references 1 and 2.

As moderate hydrostatic stress is known to have essentially no effect on
inelastic behavior, the stress dependence is taken in terms of the deviatoric
components of the applied stress

1
S ij = aij - T akkaij	 (2)

and of the internal stress

1
a ij - a ij - I akkaij	 (3)

where the symbol aij denotes the usual Kronecker delta. We further identify

i ij - S ij - aij	 (4)

as the effective stress. The potential nature of a is expressed by

c i j	
a	

(5)
ij

3	 w
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and	 ORIGINAL PAGE IS
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where t represents the inelastic strain rate and h is a scalar function
of the Wernal stress. Equation (5) is termed the flow law. Equation (6) is
termed the evolutionary law.

The appropr i ate 	of equations (5) and (6) has been discussed on physi—
cal and thermodynamical grounds by several authors including ice (ref. 3),
Ponter and Leckie (ref. 4), Valanis (ref. 5), and Robinson (ref. 6). Equations
(5) and (6) are shown in reference 4 to hold exactly for an individual slip
system in a polycrystalline metal deforming at high temperature where ai^ -ii is
interpreted as the local internal flow stress on the slip plane. EquatioN (5)
remains valid (ref. 3) for a polycrystalline metal where o 	 and i	 are
interpreted as the average stress and inelastic strain rate iiver a volJme of
material that is large compared to the crystal size. The derivative in e qua-
tion (6), however, as applied to an individual slip system, requires constant
local stress, whereas in the present context it implies constant average
stress. As pointed out in reference 4, it is not generally possible to assume
that constant average stress implies constant local stress and, consequently,
that equation (6) remains exactly true for a polycrystalline material. Nev-
ertheless, constitutive relationships have been derived from equations (5)
and (6) that are consistent generalizations of well established classical
equations (refs. 3 and 4) and that are capable of accurately representing
important features of high temperature behavior of metals including rate—
dependent plasticity, creep, recovery and their interactions (refs. 1 and 2).

The function a in the Robinson model can be written as

a = K2 J ^ f(F)dF + / A g(G)dG	 (7)

where the stress dependence enters through the scalar functions

	

F(t ij ) and G(a ij )	 (8)

taken as depending on the effective and internal stress, respectively. The
functions f and g and the material parameters K, p, R, and H are
assumed known for present purposes; they are determined as described in
earlier writings (refs. 1 and 2).

Under full isotropy, the functions F and G can be taken to depend on
the principal stress invariants

112 •	 tijtji
(9)

J 3 =	 =ij"jkzki

and

ti
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In the spirit of von Mises, we retain only J2 and /2, quadratic in
stress, and take

J
F = --^ — 1	 (11)

K

and	
ee

G - s2	 (12)

Equation (11) plays the role of a (Bingham) yield condition with K de-
noting the magnitude of the threshold shear stress below which inelastic defor-
mation does not occur — inelastic strain occurs only for F > 0. For our pur-
poses, we treat K as a constant; more generally it is considered a scalar
state variable.

The flow and evolutionary equations are determined directly from equations
(5) and (6) making use of equations (7) to (12) and taking

h gh
H	 (13)

in equation (6). The details of this development are given in appendix A. Here
we state just the result, i.e., the flow law

2pi
ij
	f(F)E i j	 (14)

and the evolutionary law

aij = 9 H	
c ij — Rgr (G)aij	(15)

h

in which

gr(G) = g(G)
gh

This is essentially the form of the Robinson model for a fully isotropic
material and for isothermal conditions. Some important features of the model,
such as the accompanying inequalities (refs. 1 and 2), are not expressed or
discussed here as they do not pertain directly to the extension to anisotropy.

(16)
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The evolutionary law (eq. (15)) is of the widely accepted Bailey-Orowan
type, which presumes that high-temperature deformation occurs under the action
of two simultaneously competing mechanisms, a hardening process proceeding with
accumulated deformation (characterized by the first term in eq. (15)) and a re-
covery term proceeding with time (characterized by the second term). Steady
state then corresponds to the condition where the two competing mechanisms
balance and S id - 0.

In most applications of the theory to date, the function f has been
chosen as

C.'P1.l.h,•. o _ r i ^(' ..	 vy

	 f(F) - Fn

or	
OF POW-t' QJi %L':TY	 (17)

f(F) - (sinh F)n

and, as suggested by the experimental results of Mitra and McLean (ref. 7),

	

g ( G ) - Gm

	
(18)

	

gh(G) - Gs
	

(19)

so that

g r ( G ) - 
Gm-B
	

(20)

where n, m, and s are constants.

EXTENSION TO ANISOTROPY

The direction of grain growth or solidification at each point in a SC or
DS solid can be characterized by a field of unit vectors di(xk). The
mechanical behavior at each point must then depend not only on the stress and

deformation history at the point but also on the local preferential direction.

This requires that dependence on di be included in F and G in equation
(8). However, as the sense of d• is immaterial, the dependence is properly
taken in terms of the product d i j . Thus, we replace equation (8) with

F(r ij ,d i dj ) and G(aij,didj)
	

(21)

As indicated in appendix B, the theory of tensorial invariants (refs. 8

to 10) requires that, for form-invariance under arbitrary rigid-body rotations,
F and G must be expressible in terms of the principal invariants of their
respective tensorial arguments and invariants involving various products of
these tensors. Here, as argued in appendix B, we take the functions F and
G as depending on the subset of these invariants,

6
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I1 = 7 T-i jl ji

I2 = didjtjkzki

I3 =
	 didj1ji

for F, and

	

Y1 S	 aijaji

'2 - didjajkaki

1

'3 = 2 didjaji

for G. Thus, we take

	

111	 1	 2
F=K2 

+ 

K2-K2 I 2 -I 3 -1 (
d

'1 +	 1	 1	 2G= K2 	K2---^ ^2-'3
d

As in the fully isotropic development we have sought generalizations of a

von Mises type theory and have, therefore, restricted our choice of invariant
expressions to those quadratic in stress. Analogous to the earlier develop-
ment, K denotes the threshold (Bingham) shear stress transverse to the pref-
erential material direction and Kd denotes the same for shear along the
material direction (fig. 1). For K - K d , indicating no difference in shear
strength across and along the directiond i , equations (24) and (25) reduce

to their isotropic counterparts (eqs. (11) and (12)).

As before, the flow and evolutionary e quations are obtained from equations
(5) and (6), this time by making use of equations (7), (13), and (22 to 25).

Again, the details are reserved for appendix A. The resulting flow law is
given by

7_

21A ij = f(F) 
	

ij +	 K2 - I (djdkl:ki + dk d i E jk	 2 dtdkEki(dij + didj)
d	 J

(26)

and the evolutionary law by

(22)

(23)

(24)

(25)

7



aij gh M Eij - Rg
r (G) Iij +

ORIGN'lL Rj; E' IS

2	 OF POOR QUALITY

Kdjdkaki + dkdiajk
d

-	 dz dk akt (a
ij 

+ didj)

Note that E. i = 0 and a.. = 0, the former indicating incompressibility of

the inelastiV deformation !^d the latter confirming the deviatoric nature of

aij. As before when K = Kd equations (26) and (27) reduce to those of the
isotropic case legs. (14) and (15)).

Recall that the functions f, g and gh and the material constants K,
u, R, and H are determined just as in the isotropic case. Determination of
Kd or alternately the ratio K/Kd is discussed in the following section.

APPLICATIONS

We first consider applications of the foregoing theory to the cases of

homogeneously stressed elements in pure shear, transverse (fig. 1(a)) and

longitudinal (fig. 1(b)) to the preferential material direction. In each
case, the x l coordinate direction is aligned with the material direction,

i.e.,	 _ (1, n , 0). For creep in transverse shear (fig 1(a)), we have

a ll = 022 = 033 = 0 12 = 
0 13 = 0

(28)

023 = T = const.

and

al 1 = 022 = 033 = 012 = 0 13 = 0

(29)

	

0123=s#0	 J
From equation (24) we obtain for F

F = T 
-2 s) 2 - 1	

(30)
K

which depends only on the parameter K. From equation (26), the flow law for

the shear rate component 
Y23 - Ytr is

_	 2	 n
	vY tr = (T 

Ls) - 
1	 (T - s)	 (31)

K
J

8



where we have made use of the first of equations (17). Now for creep under
longitudiral shear (fig. 1(b)), we write

a ll = 022 = 033 = 0 13 = 023 = 0

(32)

012 = z = const.

and

al 1 = 022 = 033 = 013 = 023 = 0
(33)

012=540

This time F from equation (24) is

F= T -s 2 -1	 (34)
Kd

which now depends only on KThe flow law for Y 12 = I	
is likewise ob-

tained from equation (26) an g is	
to

2	 n	 2
uY^o	

z -2s) - 1
	 (z - s)	 (35)

 )

Kd	 Kd

With F >> 0 and s x s :t 0 (corresponding to the initial stage of a creep
test) we obtain by dividing equation (35) by equation (31) and solving for

K2/K2

(1/n+1)
 )K2 	ito	 (36)

7 _
K d	 Ytr

As the parameter n is assumed known, the ratio K/K d is defined by equa-

tion (36) in terms of the ratio of creep strain rates along and transverse to

the preferential material direction. Simple shear tests of this type can, in

principle, be used to determine'the ratio K/Kd; however, a more practical

method on the basis, of uniaxial tests will be suggested in the following
paragraphs.

Next consider an application of the theory to that of uniaxial plane
stress as depicted in figure 2. The plane stress element lies in the plane

x3 - 0 with the tensile stress applied along xl. The preferential material

OF POUR QJALI:TY
9



direction is constant throughout the body and, in this case, makes an angle 9
with the x l axis (fig. 2). The stress components are

022 . 033 . 012 '
b a13 

• 023 • 0

with ORIGINAL PACE t5 	 (37)
OF POOR QUALITY

011.00

The unit vector d denoting the material direction is

d • (cos q, sin q, 0)	 (38)

F and G from equations (24) and (25) become

F M ° - ° 2 1 + 1(K7
2
 - 1	 4 COS 2e + s'in 2e - 1 (2 cos 

29 - sin 2e) 2	- 1

3K	 Kd

(39)

and

2 
G . 3K2 1 + (

K 2

 
- 1	 4 cos `e + sin 2q - 3 (2 cos 29 - sin 29 ) 2	(40)

) -
d

where a - all is the uniaxial component of the internal stress o ij . The

governing equations for the extensional strain rate c • c 11 are given by equa-

tions (26) and (21) as:

2

i

	

	 f(F)(o - a) 1 + a -7 - 1 (4 cos 2q + 3 cos 2e sin 2g + sing)	 (41)
Kd

a	 g^ 3— 	 Rgr (G)o 1 + T 2̂ - 1 (4 cos 2
9
 + 3 cos 2, sin 2, + sin 2,)	 (42)

d

As expected, the in-plane shear strain rate Y 	 Y12 is not generally zero and

is given by:

10
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Y -	 f ( F )(a - a) K - 1 sin 29 sir, 29 	(43)

d

The shear strain rate is zero when the preferential material direction is
9 - 00 or 9 - 90" and when the material is isotropic, i.e., K/Kd . 1.

With 9 - 00 an6 f(F) - Fn , equations (39) and (41) become

	

F - o- a 2 -1	 (44)0	 3K d

	c0 	 3v Fn K2

2 
(a - a)	 (45)

Kd

With o= 90 0 , equations (39) and (41) give

2
F90 s a - a	 1+T ; -1	 -1	 (46)

	

3K	 Kd	 Il^

2

`90=^F90 1 + -	 -1	 (a— a)	 (47)

d

Under constant stress creep conditions with F >> 0, the ratio of initial

creep rates corresponding to V = 0' and • - 90 * is given by

K
2	

n+1

(Eo K d
s

`90 1 + 1F
K

solving for K 2 /K2 we get

C	

(1/n+1)

3(Ego
^

K2 

Kd	 4 -	 c0
(Il n+!)

`90

(48)

(49)

11



As the material parameter n is presumed known, equation (49) allows the

determination of the ratio K /Kdd from uniaxial tests with stress directed
along and transverse to the ggrin growth or solidification direction. Uniaxial
tests conducted with the applied stress at arbitrary angles to the preferential

material direction will provide information on wh'-h assessments of the present
theory can be made.

For a complete elastic-viscoplastic theory, needed for structural analy-

sis, a compatible anisotropic elasticity formul y tion must be coupled with the
present model. This will not be dealt with here but will constitute a topic
of subsequent research.

SUMMARY AND CONCLUSIONS

A constitutive theory his been presented for representing the anisotropic

viscoplastic behavior of high-temperature alloys that have directional proper-

ties resulting from controlled grain growth or solidification. The theory is
constructed by defining a vector field that identifies the preferential direc-
tion at each material point. This results in a locally transversely aniso-
tropic model with allowance for spatially varying directional properties. The

anisotropic theory is based on the isotropic viscoplastic model of Robinson
that has already been successfully applied in elevated temperature structural
analysis.

Application of the anisotropic theory i; made to homogeneously stressed

elements in pure shear with the shear direction taken transverse to and along
the preferential material direction. These simple applications help to illus-
trate the physical origin of the pertinent material parameters K and Kd.

Application is also made to a uniaxially stressed rectan,ular block in a state

of plane stress with the spatially constant material direction making an arbi-
trary angle with the stress direction. As expected, the results indicate that

shear strain generally develops in the absence of shear stress. In other

words, the principal axes of stress and strain are not in alignm ,"nt as is

generally true under conditions of anisotropy.

It is shown that the critical material parameter Kd (or alternately the
ratio K/Kd ) can be determined on the basis of uniaxial creep tests with the
uniaxial stress direction along and transverse to the preferential material

ilrection (grain growth or solidification direction).
For a complete elasto-viscoplastic model, an appropriate elasticity form-

ulation must be coupled with the present model.

12
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APPENDIX A

G^ POOR QUALITY	
DERIVATION OF FLOW AND EVOLUTIONARY EQUATIONS

Isotropic Case

We first present the derivation of the flow and evolut ; onary laws for the
filly isotropic case, i.e., leading to equations (14) and (15). From equation
(5) we write:

an	 an dF 
aJ2 aSkt	

(1A)
E i j = ao i j = 3T cTr2 a k̂L aoii

Making use of equations (7) to (12), we have

ar ^ ^ f(F)	 (2A)

dF	 1	
(3A)a

2 K

aJ2

a^ = E i j	 ( 4A )

and

as
30 k - 

aki a^ j	 6ijakL	 (5A)

Substitution of equations (2A) to (5A) into equation (1A) leads directly to
equation (14),

	

2viij = f(F)Eij
	

(6A)

Next, from equation (6) we write:

a a -h an
	

11TdF 

aJ2 + an dG 
ay 

2 a^7A)
ij	 aaijh 	 ^ aak, at 

dY
2 a a 4 aaij

where in addition to equations (2A) to (5A), we have

n = K2 A g ( G )	 (8A)

13
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(9A)
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02	 (10A)
aaij

	

as 2 • a ij	 (11A)

ij

and

aa

	

aa4 z aki 6Lj	 3 6 ij skt	 (12A)

Combining these and using equation (13) gives equation (15),

a ij = 9—Ĥ  e ij – Rgr (G)a ij 	(13A)
h

Anisotropic Case

The derivation of equations (26) and (27) from equations (5) and (6) will

now be outlined. From equation (5) we write:

an	 as aF al
l + aF aI 2 + aF aI 3 	asks	

(14A)
aa i j - aT a a kt a' a Sk7o, aI3 2'54 	 j

Using equation (7) together with equations (22) to (25) we have (without

repeating terms already included in equations (2A) to (12A))

	

aF	 1	
(15A)a =

all

	

3- = - ij	 (16A)
ij

aF	 1	 1	 (17A)a= - ^
d

14
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aI2

a^jj  = dj dkE ki + dkdiEjk

aF	 1	 1	
d•d E

T	 K7` —	 j j i
d

P

(18A)

(19A)

(20A)
a-5- = 7 djdi

iJ

askL	 1

aa ij	 aki anj	 j 6ijdkt,
(21A)

Substituting the appropriate terms from equations (2A) to (12A) and equations

(15A) to (21A) into equation (14A) we get equation (26),

2

2uiij = f(F)E ij +	 K2 - 1 (djf dd k E ki * d kd i E jk - 
2 d

kE kL ( d ij + didj)

d

(22A)

Finally, we write from equa t ion (6)

	

an aF al l + aF a `2 + aF 
a 

3	 aa4

aij = -h
	 -5T1- aa kz 	2 aa k,	 aI 3 aak, a"ij

- h an	 aG a '1 + aG a -2 + aG 'Y3 aakR	 (23A)
a ? 1 aakL	

a'2 aakL	 a' 3 aaka aa i j

The terms in equation (23A) not previously stated are

aI1
(24A)

aaij

aI2

aa i . = -[djdkEki + d k d i
l:	

(25A)
J	 J

26A

	

aaiR s 6ki aLi 	 3 dijak l 	( 	 )
J

15
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aa ij . aij

	

IG	 1 _ 1

a, 2	 d KT

a, 2 _
d daa ij	 jk a 	dki - kdiajk

aG	 _	 1 _ 1
asdidiaji

3	 d J)

a ^ 3 . 7 d.di
ij	 ^

(27A)

( 28A)

(29A)

(30A)

(31A)

(32A)

Combining the appropriate terms in equation (23A) and again making use of e qua-

tion (13) we get equation (27),

2

ij	 Qh^ ciJ - Rgr(G) aiJ + 7 - 1
 (djdkaki + dk d i a,jk

 ( 
K 
d

-	 d a d k a
kt

(6	 + d i d )	 (33A)

Jl

16
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BASIS FOR SELECTION OF INVARIANTS

It follows from the theory of algebraic invariants (refs. 8 to 10) that

the scalar function F, specified in equation (21) as a function of the two

symmetric tensors

a- [E
ij

]	 (1B)

and

D- [di dj ]	 (2B)

is form-invariant under arbitrary rigid body rotations if expressed in terms of

the invariants

trD - trD 2 = trD 3 = 1

trZ - 0, trM 2 , tr7E 3	(3B)

trD2= trD 22, trD22

A set of nontrivial invariants extracted from equations (3B) is

	

tr72 , tr23 , trD2 and trD2 2 	 (4B)

Seeking generalizations of a von Mises type, we limit the dependence of F on

combinations of the invariants in equations (4B) that are quadratic in stress,
i.e.,

I1	 tr22 =	 Eijlji

I 2 = trD22 = d i d iz jk1 ki	 (56)

2	 2

I3 =	 2 trD2 _	 1 didjzji

In particular, we take

F = 7	 — -	 I2 — I3 — 1	 (66)

K	 Kd K
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as expressed in equation (24). A parallel argument applies to the function G.
According the equations (21) G depends on the symmetric tensors

A s [aid] (76)
ORIGINAL^^^,^' ^^

and	
OF POOR QUALITY

D= [ d i d ] (86)

and we are led, using arguments similar to the above, to express	 G in terms

of the invariants

^1 = 7 trA 2 = 7 aijaji

'2 = tr DA 2 = didjajkaki
(98)

'2 =	1
3	 2

trDA 2	 2
=	 d d a

(71 	 i j ji

x

Specifically, we write

	

G- L1+ 1 _1\	 '2
K 2	K2 K2)
	

2	 3d()
(10B)

as given by equation (25).
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