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Cleveland, Ohio 44135
SUMMARY
A creep damage accumulation model is presented that makes use of the
Kachanov damage rate concept with a provision accounting for damage that
results from a variable stress history. This is accomplished through the
introduction of an additional term in the Kachanov rate equation that is
linear in the stress rate. Specification of the material functions and param-
eters in the model requires two types of tests constituting a data base:
(1) standard constant-stress creep rupture tests, and
(2) a sequence of two-step stress creep rupture tests
INTRODUCTION
One of the primary failure modes considered in the ASME Code Case N-47
(Ref. 1) for structural components in elevated-temperature service is that of
creep rupture under quasi-steady, long-term loading. The Code Case specifies
that predictions of time to failure under such loading conditions should be

based on the "time-fraction law," originally proposed by Robinson (Ref. 2),

te

FOR W

o

in which tf denotes the time to failure and tR(o) represents the "creep-

rupture curve" determined from uniaxial tensile creep tests at constant stress.

Several authors (e.g., Refs. 3 to 5) have pointed out that Eq. (1) is not

strictly satisfied for many structural alloys under variable stress conditions.

For example, it is ofter oubserved that
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in uniaxial two-step creep rupture tests involving a step-up in tensile stress

and

-

for a stress down-step*.

Here, a creep damage model is proposed similar to that originally pro-
posed by Kachanov (Ref. 6) - and employed or extended by numerous workers
(e.g., Refs. 7 to 9) - but which includes an additional term depending linearly
on the stress rate. This resilts in a time~independent contribution to the 1
predicted damage arising from variations in stress in an already creep damaged
material. The model is stated here for isothermal and noncyclic conditions; ?
extensions to nonisothermal conditions and to reverse stressing will be sub- |
Jjects of continued research.

The proposed damage rate equation is shown to be equivalent to a damage
law of the form

W:l"‘a (4) "-x

0

in which tf and tR(c) have the same meanings as in Eq. (1) and o 1is a
functional of the stress history o(t). For some stress histories o is nega-
tive and Eq. (4) predicts a comparatively shorter time to failure than Eq. (1);

in other cases a is positive and Eq. (4) predicts a longer time to failure.

*Notably, this effect of stress sequencing is opposite to that ordinarily ob-
served in fatigue testing.
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The implementation of the model requires a data base made up of two types
of tests:

(1) standard constant-stress creep rupture tests, and

(2) variable (two-step) stress creep rupture tests.

A unique feature here is that the variable stress experiments are used
not solely as tests to furnish evidence for verification of the model, as is
commonly the case, but instead they make up an essential part of the data base
for establishing the functional forms and parameters of the model.

As a background for the development of the proposed model, the connection
between the Kachanov damage model and the time-fraction law, Eq. (1), will
first be demonstrated. The proposed model will then be stated along with a
discussion of the testing required for its specification.

THE KACHANOV MODEL AND THE TIME-FRACTION LAW

The Kachanov damage model, giving the rate of degradation of a material

under creep at elevated temperature, is frequently stated in the separable form

__fo) (5)

v g'(v)
in which ¢ 1is the material continuity and o 1is the applied stress. For a
material completely intact y = 1, and for complete destruction ¢ = 0.

The rupture life tR under constant stress is found by integration of

Eq. (5) and is

tR(a) _ q(1) ; 9(o0) _ con:t. (6)

In the special case where f = Co", Eq. (6) takes the familiar form

tR(o) - co:st. (7)

The failure time te under an arbitrarily varying stress is found from

Egs. (5) and (6) as

¥ A

-

S




t
f
mn-gm>=jf WL e (8)
0

or

te

ﬁ%ﬁ=1 (9)

0
which is identical to the time-fraction law, Eq. (1). Whatever the functions
f and g, Eq. (5) demands the satisfaction of Eq. (1) at failure. The
Kachanov creep damage model, expressed in the separable form of Eq. (5),
cannot lead to the conditions stated in Eqs. (2) or (3).

THE PROPOSED DAMAGE MODEL

Here, a damage rate equation similar in spirit to that of Eq. (5) is

introduced that contains an additional term proportional to the stress rate g.

That is, we propose the rate equation

n
.

v =h(ow)e - C = (10)
wm

in which the second term is taken to be a special form of the Kachanov equa-

tion, Eq. (5), whereas the first term is taken linear in the stress rate .

The first term represents a time-independent contribution which arises from

changes in applied stress; the second term represents the usual time-dependent

contribution as proposed by Kachanov. The constants C, n, anc m and the
function h are determined by experiment as described below.

Equation (10) is consistent with the view that creep damage occurs as the
result of the creation of interior voids or cavities. In the context of step-

wise creep tests, th2 first term in Eq. (10) allows for either further damage

or healiﬁq of prior damage as a consequence of changes in strcss. This can be

thought of as resulting from further widening or partial closing of existing
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voids depending on the direction of the stress change. 50 that stress changes
do not effect the yet undamaged material, it is reasonable to restrict the
function h such that
h(e,1) = 0 (11)
With this restriction, it is seen that in ordinary creep rupture tests,

in which an undamaged specimen is brought relatively abruptly to a constant 1

stress and held (i.e., o = 0), there is no contribution from the first term in
EGg. (10) throughout the test and we can write

0 tR J

vy = - Co"dt (12) i

or

1

to (o) = ——— :
C(m + 1)o" !

R (o)
Optimal values of 1/[C(m + 1)] and n can thus be determined using Eq. (13)
and data pairs in the form (tR, o) from standard creep rupture tests.
The variation of the material continuity ¢ 1in creep rupture tests is
likewise found by integrating Eq. (10) with the first term absent. Thus
¢ 1/(m+1) |
dt 'y

v =|1- E;g;j‘ . (14)

o)

ey

Only for the very special case m = o, corresponding to the second term
in Eq. (10) being independent of y, is the diminuation of material continuity
(or the accumulation of damage D =1 - y) linear in time. With m > o, v
varies nonlinearly in time, slowly at first but at a higher rate as internal
damage occurs.

Hypothetical trajectories of two creep rupture tests at stress levels of

o4 and o, are shown as the solid lines in the (W’o’f%g> plot of Fig. (1).
R
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Each curve originates at the intersection of ¢ =1 and ~%£ = 0 and each
R
terminates, at failure, in the plane ¢ = o. The locus of rupture points in
y = 0 is defined by %3 = 1.
R

We now assume that the stress dependence of the minimum creep rate em
in constant-stress creep tests can be adequately represented by the Norton law

(Ref. 10)

. Ao (15)

where A and N are known constants. The subsequent development is not de-
pendent on the particular choice of the Norton law; it has been chosen because
it has wide application and is simple. We further assume that the subsequent
acceleration of creep in such tests is due to internal damage accumulation*

and that, following Kachanov, Eq. (15) remains valid with ¢ replaced by the

"effective" stress ofy, i.e., we take

Lo A (%)N (16)

Dividing Eq. (15) by Eq. (16) and solving for y, we get
1/N

€m

=\—+— (17)

¢
indicating that we can assign values of y along a given creep-rupture curve.

The minimum creep rate Lm can be readily identified, and ¢ can be deter-

mined at each instant of time along the curve.

Eliminating ¢ from Eqs. (14) and (17) we get:

*[f, as is usually the case, the creep rupture tests are conducted under
constant load rather than constant stress, the contribution of the creep
acceleration related to geometry change must be accounted for.
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m dt
LU D S (18)
p tp(a)

0

AS (Emlé) is measurable along a given creep curve, we can generate data sets in
the form (e /e, ., t) directly from creep-rupture tests and use these with
Eq. (18) to obtain optimal values of N/(m + 1). With N known, this estab-
lishes m; with m and 1/[C(m + 1)] in Eq. (13) known, C is determined.
Thus, n, m, and C are known and the second term in Eq. (10) is fully speci-
fied from creep-rupture data alone.

Before proceeding with the determination of h (o,9) in Eq. (10), we
consider the predicted response of a two-step stress test when h =z o and
Eq. (10) is of the classical Kachanov form. In this case, the image of a
typical two-step creep rupture test is shown as OABC in Fig. 1. As the abrupt

step from o, to o, occurs (AB), y remains constant. Note that the pro-
1 2

jections of the step test OABC as well as those of the constant stress tests at

oy and g, are identical in the (w,‘/%‘i> plane. Moreover, for each test,
R

constant or variable stress,

te

dt
toler = ! (19)
at failure.

Next, we consider stepped creep rupture tests designed to establish the
form of the function h(o,y). The image, predicted by Eq. (10), of a test
involving a step increase from 9y to a5 is indicated as OABC in Fig. 2.
The stress is held constant at 9 in 0<t«< tA (tA being the time corre-
sponding to point A). At t = tA the stress is abruptly increased to a5
(along AB) and again held constant. We suppose that creep rupture occurs at

the time t = tC (corresponding to the point C in Fig. 2). Here, ¢ is re-
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presented as decreasing (indicating further damage) as the stress is increased
abruptly to a,. Correspondingly,
et <1 (20)
tRIJS
at the failure time tf = tc.

The case where a step down in stress is made from 9, to % at t = tA
is depicted in Fig. 3. Here, ¢ is represented as increasing (indicating
partial healing) as the stress is decreased and,

at > 1 (21)
tRio)
at the failure time tg = tc.

Over the intervals when the state point follows the path segment OA or BC
in Figs. 2 or 3, % =0 and the first term in Eq. (10) does not contribute to

v. During initial load-up ¢ = 1, corresponding to the undamaged material
condition, and likewise the first term does rot contribute, in accordance with
Eq. (11). However, as the abrupt stress change AB is made, the material has
incurred prior damage and, as the time interval of loading is short, the first
term in Eq. (10) dominates; the continuity v, then increases or decreases,
depending on the nature of h(o,v) and the stress history.

In light of the foregoing discussion, ¥p, (e.g., in Fig. 2), is found by
integrating Eq. (10), including only the second term, thus

t

YA A

Sy < T Co] dt (22)
1 0
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t 1/(m+1)

Sim.iarly, yg is found by

0 t
m ¢ n
/ vidy = -/ Coydt (24)
Vg th

t -t 1/(m+1)
c A
WB =(' tRIUZ;) (25)

The change in ¢ during the abrupt step change from 9 to P is thus the

or

difference of Eq. (23) and Eq. (25). Equivalently, we know the points A’
(ol,wA) and B' (oz,wa) as projected into the o,y plane (Fig. 4).

If we were to perform a sequence of step tests of this kind, each starting
at o =0y and with a step (up or down) at t = ty, we would map out a curve
in the o,y plane containing A' and B'. Further, if we conducted several
sequences of step tests commencing at other stress levels and with stress
changes at other times, we would eventually map out an entire family of curves
in a region of the o,y plane (Fig. 5). Figure 5 is schematic and real data
would likely show considerable scatter, nevertheless, it is reasonable to ex-
pect that the underlying trends can be satisfactorily represented by a family
of curves

p(o,w) = const. (26)
which fits the data in a least-squares sense.

As the abrupt stress change occurs in any of the step-stress tests, the
state point moves along one of the curves represented by Eq. (26). As discussed

earlier, the first term in the rate Eq. (10) governs, i.e., we have

v = h(o,w)o (27)
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! We can eliminate time in Eq. (27) and write
Sl 3% ~ h(a,y) (28)
;1 Now, we want the experimental curves represented in Eq. (26) to be the
3 integral-curves of Eq. (28), that is to say, we want the function h(a,y) to
5 be given by
: ,

| A i A D (29)

do ap.

3
With p(o,y) specified, and thus ap/as and ap/ay known, we then have '

an explicit form for h(o,y).

This completes the specification of the rate equation, Eq. (10), and we
can supposedly use it to predict the time to creep failure under an arbitrary
stress history o(t). In general, this is done by numerically integrating
Eq. (10) to determine the time at which ¢ » o.

The approach followed here in determining the function h(o,y) on the
basis of two-step creep rupture tests is analogous to that followed by Leckie
and Ponter (Ref. 11) in obtaining representations of creep deformation under
variable stress conditions. In their case, stepped creep tests provided a
description of how to move from one constant stress creep curve to another as

the stress varied. Here, stepped creep rupture tests similarly provide a

description of how to move from one constant stress rupture curve, in the

(q;,o,/%t—) space of Fig. 2 or 3, to another as the stress is varied.
R

The success of the model proposed here depends on the ability to conduct
a sequence of accurate and repeatable two-step stress rupture tests. Assuming
this can be done, the model must, at the very 1east,~gixgmgggg accurate pre-
dictions of creep rupture under stepped loading, since such tests comprise its

dgata base. In principle, the model should also provide good failure predic-

10




tions under gensral (tensile) variable stress conditions, although the proof
of this must obviously come from experiment,
THE PROPOSED MODEL AND THE TIME-FRACTION LAW
To demonstrate that Eq. (10) is equivalent to the form shown in Eq. (4),

we integrate Eq. (10) for an arbitrary stress history o(t) as follows:

t
f
/ oy = o, )odt - ot (30)
0

Using Ey. (13) and calling o4 = o(0) and of = o(tf), we get

t
f'
== (m+1 M (o,p)do + at 31
(m+ 1) | w (0,9)do ) G (31)
93
or

+ a (32)

in which

°f

= (m+1) v™(o,v)de (33)

o.
1

Note that the integral in Eq. (33) is path dependent so that the value of «a

depends on the stress history o(t).
SOME HYPOTHETICAL FORMS OF p(o,y)

The key to the behavior under variable stress lies in the form of p(o,v)
in Eq. (26). Experiments are likely to show that the p curves of Fig. 5 are
characteristically different in different regions of the o,y plane, reflect-
ing distinct rupture mechanisms. In any case, if a sufficient number of vari-
able stress rupture tests are conducted spanning the relevant regions of the

o, plane, this information should be inherently built-in to the model.

1
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In the absence ot sufficient variable stress tests, it is instructive to
hypothesize some simple forms of p(a,p) and examine the consequences an the
predictad creeo rupture behavior,

In regions of the a,y plane where £q. (26) represents a family of
horizontal lines (Fig. 6), h = o in Eq. (10) and the model is equivalent to
the usual time-fraction law expressed in Eq. (1).

An interesting case is provided by the family of curves

S
l1-v

=i const, (34)
%

in which s and o are constants. We then have

0
s
-2%= ..l..;é.,qi,_ (33)
g
and
%5—= -%ws‘l (30)
so that
1-4S
h(o,W) ="‘i—a( S_‘l’] ) (37)
1]
Note that, in agreement with Eq. (11),
h(o,1) = 0 (38)
Equation (10) thus becomes
S n
. _ 1 ]_ -y . _ L
Y = --S—o-(——T—wS“ )0 C wm (39)

The family of curves corresponding to s = 2 and several values of % in
Eq. (34) is shown in Fig. 7. Using these and appropriate values for m, .
and og, we can calculate the time-fraction integral, Eq. (32), for any given
strecs history. Consider, for example, the two-step tests depicted in Fig. 8;

the first involves a step-up in stress from o; = 140 to of = 175 MPa (Fig.

12
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&(a)) and the second a step-down from a; = 140 to ag = 105 MPa (Fig. 8(b)).
With m taken as m = 1.5, values of the time-fraction integral have been cal-
culated and are yiven in Tables I and II for the stress histories of Figs. 8(a)
and (b), respectively. The quantity 8 in the tables denotes the fraction of
the rupture life tR(oi) = tp (140) at which the step up (or down) in stress

is made. When the step is made relatively early in life (e.g., 8 = 0.2), the
value of the integral at failure is not very different from unity; when the
step is made rel>tively late in life (e.g., 8 = 0.8), the integral may differ
substantially from unity.

The point 0 in Fig. 7 represents the point in the o,y plane from which
the abrupt stress step is made corresponding to 8 = 0.2 in Table I or II. As
the stress is increased from 140 to 175 MPa, the state point moves from 0 to a.
As the stress is decreased to 105 MPa, the point moves to b. Only slight addi-
tional damage or healing is incurred during the stress change. The predicted

values for the time-fraction integral at failure are

t
f dt
o R
for the step-up in stress, and
L
TETFT = 1.05 (41)
0

for the down-step.

The point 0' in Fig. 7 indicates the point from which a step is made with
£ = 0.8. The material has now incurred considerable prior creep damage, and a
step-up in stress to 175 MPa moves the state point to a', indicating substan-
tial additional damage as the stress is increased. The value of the time-

fraction at failure in this case is

13
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L

dt
‘t—R’m = 0.85 (42)

0
Note that here, following the expenditure of 0.8 of the rupture life at
o = 140 MPa, a stress increase to approximately 193 MPa or greater causes
failure immediately as the stress is changed, corresponding to y » o.
A step down in stress from 0' moves the state point to b* providing par-
tial healing, and the integral at failure is

te

dt
W = 1.18 (43)

) f

Additional forms of p(o,y) can be hypothesized and calculations made
similar to those above, however, such exercises would probably not be fruitful
at present. It is preferable to wait until sufficient experimental data can
be generated and the actual forms of P(o,v) and h(o,) determined.

It is possible that a single family of curves in the og,v plane is not gf
sufficient to represent the effect of both stress increases and stress de-
creases on the creep damaged material. If this were the case, the same prin-
ciples and procecures outlined above are still applicable with the following ?

modifications and reinterpretations. The damage rate equation, Eq. (10), could

“
4
then be modified to
[ . . o‘n
Vv = hl(o,w)<c> + hz(o,w)<—o> -C ;ﬁ' (44)
with <X> = X3 X >0
and <X>=0; x<o0
in which
N
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hy(o,v) = = (45)

i
1

and

[

holose) = = |53 (46)

Y
©
n

The family of curves represented by pl(o,w) = const. in the o,y plane would
be determined from a sequence of stepwise stress rupture tests involving a
step-up in stress and the curves p2(o,¢) = const. from a sequence with a
step-down in stress.

CONCLUSIONS

The proposed damage model is limited in applicability to a narrow range
of conditions, i.e., uniaxial, isothermal, variable tensile stress histories.
Nevertheless, the existing technology supporting the design of elevated tem-
perature components (e.g., the guidance provided by ASME code case N-47) does
not provide an adequate methodology for accurately predicting creep rupture
even under these restricted conditions.

The attempt here is to provide a simple model which has the potential for
predicting failure in, perhaps, the most fundamental of problems of high-
temperature design, creep rupture under quasi-steady, long-term loading. Once
these predictions can be made with reasonable consistency and accuracy, only
then does it seem appropriate to concentrate on further complexities such as
cyclic stressing, multiaxiality, creep-fatigue interactions, etc.

As the present creep damage model is based on both standard creep rupture
tests and stepwise stress rupture tests, it is expected that it should provide
accurate predictions under general (tensile) variable stress conditions. This,

of course, must ultimately be demonstrated by exp-~riment.
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Figure 1. - Representation of constant stress creep rupture tests in (q,,o,fdt

)

space.
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Figure 3. - Representation of step-down creep rupture test in V0, EE- space.
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Figure 4. - Projection of path segment AB on o,y plane.

N
19 %




"

~\\t>\\\\52:ilfl;const

» 0
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Figure 6. - Family of ¢ = const. curves in o,y plane.
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Figure 8. - Examples of step-up and step-down stress rupture tests.
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