619 research outputs found

    IR and UV Galaxies at z=0.6 -- Evolution of Dust Attenuation and Stellar Mass as Revealed by SWIRE and GALEX

    Get PDF
    We study dust attenuation and stellar mass of z0.6\rm z\sim 0.6 star-forming galaxies using new SWIRE observations in IR and GALEX observations in UV. Two samples are selected from the SWIRE and GALEX source catalogs in the SWIRE/GALEX field ELAIS-N1-00 (Ω=0.8\Omega = 0.8 deg2^2). The UV selected sample has 600 galaxies with photometric redshift (hereafter photo-z) 0.5z0.70.5 \leq z \leq 0.7 and NUV23.5\leq 23.5 (corresponding to \rm L_{FUV} \geq 10^{9.6} L_\sun). The IR selected sample contains 430 galaxies with f24μm0.2f_{24\mu m} \geq 0.2 mJy (\rm L_{dust} \geq 10^{10.8} L_\sun) in the same photo-z range. It is found that the mean Ldust/LFUV\rm L_{dust}/L_{FUV} ratios of the z=0.6 UV galaxies are consistent with that of their z=0 counterparts of the same LFUV\rm L_{FUV}. For IR galaxies, the mean Ldust/LFUV\rm L_{dust}/L_{FUV} ratios of the z=0.6 LIRGs (\rm L_{dust} \sim 10^{11} L_\sun) are about a factor of 2 lower than local LIRGs, whereas z=0.6 ULIRGs (\rm L_{dust} \sim 10^{12} L_\sun) have the same mean Ldust/LFUV\rm L_{dust}/L_{FUV} ratios as their local counterparts. This is consistent with the hypothesis that the dominant component of LIRG population has changed from large, gas rich spirals at z>0.5>0.5 to major-mergers at z=0. The stellar mass of z=0.6 UV galaxies of \rm L_{FUV} \leq 10^{10.2} L_\sun is about a factor 2 less than their local counterparts of the same luminosity, indicating growth of these galaxies. The mass of z=0.6 UV lunmous galaxies (UVLGs: \rm L_{FUV} > 10^{10.2} L_\sun) and IR selected galaxies, which are nearly exclusively LIRGs and ULIRGs, is the same as their local counterparts.Comment: 27 pages, 8 figures, to be published in the Astrophysical Journal Supplement series dedicated to GALEX result

    Effect of Layer-Stacking on the Electronic Structure of Graphene Nanoribbons

    Full text link
    The evolution of electronic structure of graphene nanoribbons (GNRs) as a function of the number of layers stacked together is investigated using \textit{ab initio} density functional theory (DFT) including interlayer van der Waals interactions. Multilayer armchair GNRs (AGNRs), similar to single-layer AGNRs, exhibit three classes of band gaps depending on their width. In zigzag GNRs (ZGNRs), the geometry relaxation resulting from interlayer interactions plays a crucial role in determining the magnetic polarization and the band structure. The antiferromagnetic (AF) interlayer coupling is more stable compared to the ferromagnetic (FM) interlayer coupling. ZGNRs with the AF in-layer and AF interlayer coupling have a finite band gap while ZGNRs with the FM in-layer and AF interlayer coupling do not have a band gap. The ground state of the bi-layer ZGNR is non-magnetic with a small but finite band gap. The magnetic ordering is less stable in multilayer ZGNRs compared to single-layer ZGNRs. The quasipartcle GW corrections are smaller for bilayer GNRs compared to single-layer GNRs because of the reduced Coulomb effects in bilayer GNRs compared to single-layer GNRs.Comment: 10 pages, 5 figure

    Emerging Infectious Disease leads to Rapid Population Decline of Common British Birds

    Get PDF
    Emerging infectious diseases are increasingly cited as threats to wildlife, livestock and humans alike. They can threaten geographically isolated or critically endangered wildlife populations; however, relatively few studies have clearly demonstrated the extent to which emerging diseases can impact populations of common wildlife species. Here, we report the impact of an emerging protozoal disease on British populations of greenfinch Carduelis chloris and chaffinch Fringilla coelebs, two of the most common birds in Britain. Morphological and molecular analyses showed this to be due to Trichomonas gallinae. Trichomonosis emerged as a novel fatal disease of finches in Britain in 2005 and rapidly became epidemic within greenfinch, and to a lesser extent chaffinch, populations in 2006. By 2007, breeding populations of greenfinches and chaffinches in the geographic region of highest disease incidence had decreased by 35% and 21% respectively, representing mortality in excess of half a million birds. In contrast, declines were less pronounced or absent in these species in regions where the disease was found in intermediate or low incidence. Also, populations of dunnock Prunella modularis, which similarly feeds in gardens, but in which T. gallinae was rarely recorded, did not decline. This is the first trichomonosis epidemic reported in the scientific literature to negatively impact populations of free-ranging non-columbiform species, and such levels of mortality and decline due to an emerging infectious disease are unprecedented in British wild bird populations. This disease emergence event demonstrates the potential for a protozoan parasite to jump avian host taxonomic groups with dramatic effect over a short time period

    Combined MYC and P53 defects emerge at medulloblastoma relapse and define rapidly progressive, therapeutically targetable disease

    Get PDF
    We undertook a comprehensive clinical and biological investigation of serial medulloblastoma biopsies obtained at diagnosis and relapse. CombinedMYCfamily amplifications and P53 pathway defects commonly emerged at relapse, and all patients in this group died of rapidly progressive disease postrelapse. To study this interaction, we investigated a transgenic model of MYCN-driven medulloblastoma and found spontaneous development ofTrp53inactivating mutations. Abrogation of p53 function in this model produced aggressive tumors that mimicked characteristics of relapsed human tumors with combined P53-MYC dysfunction. Restoration of p53 activity and genetic and therapeutic suppression of MYCN all reduced tumor growth and prolonged survival. Our findings identify P53-MYC interactions at medulloblastoma relapse as biomarkers of clinically aggressive disease that may be targeted therapeutically.Additional co-authors: Louise Howell, Colin Kwok, Abhijit Joshi, Sarah Leigh Nicholson, Stephen Crosier, David W. Ellison, Stephen B. Wharton, Keith Robson, Antony Michalski, Darren Hargrave, Thomas S. Jacques, Barry Pizer, Simon Bailey, Fredrik J. Swartling, William A. Weiss, Louis Chesler, Steven C. Cliffor

    Using Football Cultures as a Vehicle to Improve Mental Health in Men: The Case of the Redcar and Cleveland Boot Room

    Get PDF
    This paper sets out to appraise (from the perspective of members) the impact of a localized, football-based mental health intervention. Commissioned in late 2015, the ‘Redcar and Cleveland Boot Room (BR)’ was implemented in response to mass redundancy in the local area, coupled with regional suicide rates in men that exceed the national average. Interactive discussions with BR members revealed that: (a) the language of football and shared identity were important for initiating and sustaining engagement in the BR; (b) peer-support and mentoring combined with member-led activities were active ingredients of the BR and (c) that the BR was an effective vehicle for building mental health resilience. This evaluation adds to the evidence base on the value of football as a context to engage adult males in community-based interventions targeting mental health resilience

    Dynamic clamp with StdpC software

    Get PDF
    Dynamic clamp is a powerful method that allows the introduction of artificial electrical components into target cells to simulate ionic conductances and synaptic inputs. This method is based on a fast cycle of measuring the membrane potential of a cell, calculating the current of a desired simulated component using an appropriate model and injecting this current into the cell. Here we present a dynamic clamp protocol using free, fully integrated, open-source software (StdpC, for spike timing-dependent plasticity clamp). Use of this protocol does not require specialist hardware, costly commercial software, experience in real-time operating systems or a strong programming background. The software enables the configuration and operation of a wide range of complex and fully automated dynamic clamp experiments through an intuitive and powerful interface with a minimal initial lead time of a few hours. After initial configuration, experimental results can be generated within minutes of establishing cell recording

    High Performance In Vivo Near-IR (>1 {\mu}m) Imaging and Photothermal Cancer Therapy with Carbon Nanotubes

    Get PDF
    Short single-walled carbon nanotubes (SWNTs) functionalized by PEGylated phospholipids are biologically non-toxic and long-circulating nanomaterials with intrinsic near infrared photoluminescence (NIR PL), characteristic Raman spectra, and strong optical absorbance in the near infrared (NIR). This work demonstrates the first dual application of intravenously injected SWNTs as photoluminescent agents for in vivo tumor imaging in the 1.0-1.4 {\mu}m emission region and as NIR absorbers and heaters at 808 nm for photothermal tumor elimination at the lowest injected dose (70 {\mu}g of SWNT/mouse, equivalent to 3.6 mg/kg) and laser irradiation power (0.6 W/cm2) reported to date. Ex vivo resonance Raman imaging revealed the SWNT distribution within tumors at a high spatial resolution. Complete tumor elimination was achieved for large numbers of photothermally treated mice without any toxic side effects after more than six months post-treatment. Further, side-by-side experiments were carried out to compare the performance of SWNTs and gold nanorods (AuNRs) at an injected dose of 700 {\mu}g of AuNR/mouse (equivalent to 35 mg/kg) in NIR photothermal ablation of tumors in vivo. Highly effective tumor elimination with SWNTs was achieved at 10 times lower injected doses and lower irradiation powers than for AuNRs. These results suggest there are significant benefits of utilizing the intrinsic properties of biocompatible SWNTs for combined cancer imaging and therapy.Comment: Nanoresearch, in pres
    corecore