4,587 research outputs found
Tactile Interactions with a Humanoid Robot : Novel Play Scenario Implementations with Children with Autism
Acknowledgments: This work has been partially supported by the European Commission under contract number FP7-231500-ROBOSKIN. Open Access: This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.The work presented in this paper was part of our investigation in the ROBOSKIN project. The project has developed new robot capabilities based on the tactile feedback provided by novel robotic skin, with the aim to provide cognitive mechanisms to improve human-robot interaction capabilities. This article presents two novel tactile play scenarios developed for robot-assisted play for children with autism. The play scenarios were developed against specific educational and therapeutic objectives that were discussed with teachers and therapists. These objectives were classified with reference to the ICF-CY, the International Classification of Functioning – version for Children and Youth. The article presents a detailed description of the play scenarios, and case study examples of their implementation in HRI studies with children with autism and the humanoid robot KASPAR.Peer reviewedFinal Published versio
A Pilot Study with a Novel Setup for Collaborative Play of the Humanoid Robot KASPAR with children with autism
This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.This article describes a pilot study in which a novel experimental setup, involving an autonomous humanoid robot, KASPAR, participating in a collaborative, dyadic video game, was implemented and tested with children with autism, all of whom had impairments in playing socially and communicating with others. The children alternated between playing the collaborative video game with a neurotypical adult and playing the same game with the humanoid robot, being exposed to each condition twice. The equipment and experimental setup were designed to observe whether the children would engage in more collaborative behaviours while playing the video game and interacting with the adult than performing the same activities with the humanoid robot. The article describes the development of the experimental setup and its first evaluation in a small-scale exploratory pilot study. The purpose of the study was to gain experience with the operational limits of the robot as well as the dyadic video game, to determine what changes should be made to the systems, and to gain experience with analyzing the data from this study in order to conduct a more extensive evaluation in the future. Based on our observations of the childrens’ experiences in playing the cooperative game, we determined that while the children enjoyed both playing the game and interacting with the robot, the game should be made simpler to play as well as more explicitly collaborative in its mechanics. Also, the robot should be more explicit in its speech as well as more structured in its interactions. Results show that the children found the activity to be more entertaining, appeared more engaged in playing, and displayed better collaborative behaviours with their partners (For the purposes of this article, ‘partner’ refers to the human/robotic agent which interacts with the children with autism. We are not using the term’s other meanings that refer to specific relationships or emotional involvement between two individuals.) in the second sessions of playing with human adults than during their first sessions. One way of explaining these findings is that the children’s intermediary play session with the humanoid robot impacted their subsequent play session with the human adult. However, another longer and more thorough study would have to be conducted in order to better re-interpret these findings. Furthermore, although the children with autism were more interested in and entertained by the robotic partner, the children showed more examples of collaborative play and cooperation while playing with the human adult.Peer reviewe
A slow gravity compensated Atom Laser
We report on a slow guided atom laser beam outcoupled from a Bose-Einstein
condensate of 87Rb atoms in a hybrid trap. The acceleration of the atom laser
beam can be controlled by compensating the gravitational acceleration and we
reach residual accelerations as low as 0.0027 g. The outcoupling mechanism
allows for the production of a constant flux of 4.5x10^6 atoms per second and
due to transverse guiding we obtain an upper limit for the mean beam width of
4.6 \mu\m. The transverse velocity spread is only 0.2 mm/s and thus an upper
limit for the beam quality parameter is M^2=2.5. We demonstrate the potential
of the long interrogation times available with this atom laser beam by
measuring the trap frequency in a single measurement. The small beam width
together with the long evolution and interrogation time makes this atom laser
beam a promising tool for continuous interferometric measurements.Comment: 7 pages, 8 figures, to be published in Applied Physics
Semiparametric theory and empirical processes in causal inference
In this paper we review important aspects of semiparametric theory and
empirical processes that arise in causal inference problems. We begin with a
brief introduction to the general problem of causal inference, and go on to
discuss estimation and inference for causal effects under semiparametric
models, which allow parts of the data-generating process to be unrestricted if
they are not of particular interest (i.e., nuisance functions). These models
are very useful in causal problems because the outcome process is often complex
and difficult to model, and there may only be information available about the
treatment process (at best). Semiparametric theory gives a framework for
benchmarking efficiency and constructing estimators in such settings. In the
second part of the paper we discuss empirical process theory, which provides
powerful tools for understanding the asymptotic behavior of semiparametric
estimators that depend on flexible nonparametric estimators of nuisance
functions. These tools are crucial for incorporating machine learning and other
modern methods into causal inference analyses. We conclude by examining related
extensions and future directions for work in semiparametric causal inference
Control of an atom laser using feedback
A generalised method of using feedback to control Bose-Einstein condensates
is introduced. The condensates are modelled by the Gross-Pitaevskii equation,
so only semiclassical fluctations can be suppressed, and back-action from the
measurement is ignored. We show that for any available control, a feedback
scheme can be found to reduce the energy while the appropriate moment is still
dynamic. We demonstrate these schemes by considering a condensate trapped in a
harmonic potential that can be modulated in strength and position. The
formalism of our feedback scheme also allows the inclusion of certain types of
non-linear controls. If the non-linear interaction between the atoms can be
controlled via a Feshbach resonance, we show that the feedback process can
operate with a much higher efficiency.Comment: 6 pages, 7 figure
Travelling on Graphs with Small Highway Dimension
We study the Travelling Salesperson (TSP) and the Steiner Tree problem (STP)
in graphs of low highway dimension. This graph parameter was introduced by
Abraham et al. [SODA 2010] as a model for transportation networks, on which TSP
and STP naturally occur for various applications in logistics. It was
previously shown [Feldmann et al. ICALP 2015] that these problems admit a
quasi-polynomial time approximation scheme (QPTAS) on graphs of constant
highway dimension. We demonstrate that a significant improvement is possible in
the special case when the highway dimension is 1, for which we present a
fully-polynomial time approximation scheme (FPTAS). We also prove that STP is
weakly NP-hard for these restricted graphs. For TSP we show NP-hardness for
graphs of highway dimension 6, which answers an open problem posed in [Feldmann
et al. ICALP 2015]
From Relational Data to Graphs: Inferring Significant Links using Generalized Hypergeometric Ensembles
The inference of network topologies from relational data is an important
problem in data analysis. Exemplary applications include the reconstruction of
social ties from data on human interactions, the inference of gene
co-expression networks from DNA microarray data, or the learning of semantic
relationships based on co-occurrences of words in documents. Solving these
problems requires techniques to infer significant links in noisy relational
data. In this short paper, we propose a new statistical modeling framework to
address this challenge. It builds on generalized hypergeometric ensembles, a
class of generative stochastic models that give rise to analytically tractable
probability spaces of directed, multi-edge graphs. We show how this framework
can be used to assess the significance of links in noisy relational data. We
illustrate our method in two data sets capturing spatio-temporal proximity
relations between actors in a social system. The results show that our
analytical framework provides a new approach to infer significant links from
relational data, with interesting perspectives for the mining of data on social
systems.Comment: 10 pages, 8 figures, accepted at SocInfo201
Micrositing variability and mean flow scaling for marine turbulence in Ramsey Sound
We present turbulence results from two acoustic Doppler current profiler measurement campaigns carried out in Ramsey Sound at two locations within 50mof one another. The first measurements were taken in 2009 and the second in 2011; both include a complete spring–neap cycle. In this paper we characterise turbulence through turbulent kinetic energy (TKE) density and integral lengthscales and their relationships with one another and with mean flow parameters. We briefly describe the methods used to calculate these parameters. We find that a flood–ebb asymmetry is present in the data from both measurement campaigns, but although the flood tides are similar at both locations, the ebb tides are much more energetic in the 2011 data than the 2009 data. We suggest that this may be due to differences in seabed features between the two measurement locations. Dimensional analysis is employed to investigate how TKE scales with mean flow velocity; we find that the expected quadratic scaling is not well supported by the data at either measurement location. As a consequence, flows that have more energetic turbulence may instead appear to be less turbulent if judged by turbulence intensity. We investigate the correlation between lengthscales and TKE density and find that it is highly site-specific: it should not be assumed that for a given measurement location highly energetic turbulence is associated with larger flow structures or vice versa
Effect of interchain separation on the photoinduced absorption spectra of polycarbazolyldiacetylenes
The photoinduced absorption spectra of a novel polycarbazolyldiacetylene with long aliphatic chains on the carbazolyl side groups are measured and compared with those of the unsubstituted polyDCHD. The two polymers in the blue form exhibit very similar electronic absorption spectra and Raman frequencies. This fact indicates that the conjugation length of the polydiacetylene backbone is not too affected by the long substituents. In contrast, the near steady-state photoinduced absorption spectra show that different photogeneration mechanisms are involved in the two polymers. This result can be ascribed to the role played by the interchain distance in the dynamics of the relaxation processes in polydiacetylenes
Recommended from our members
In-street wind direction variability in the vicinity of a busy intersection in central London
We present results from fast-response wind measurements within and above a busy intersection between two street canyons (Marylebone Road and Gloucester Place) in Westminster, London taken as part of the DAPPLE (Dispersion of Air Pollution and Penetration into the Local Environment; www.dapple.org.uk) 2007 field campaign. The data reported here were collected using ultrasonic anemometers on the roof-top of a building adjacent to the intersection and at two heights on a pair of lamp-posts on opposite sides of the intersection. Site characteristics, data analysis and the variation of intersection flow with the above-roof wind direction (θref) are discussed. Evidence of both flow channelling and recirculation was identified within the canyon, only a few metres from the intersection for along-street and across-street roof-top winds respectively. Results also indicate that for oblique rooftop flows, the intersection flow is a complex combination of bifurcated channelled flows, recirculation and corner vortices. Asymmetries in local building geometry around the intersection and small changes in the background wind direction (changes in 15-min mean θref of 5–10 degrees) were also observed to have profound influences on the behaviour of intersection flow patterns. Consequently, short time-scale variability in the background flow direction can lead to highly scattered in-street mean flow angles masking the true multi-modal features of the flow and thus further complicating modelling challenges
- …
