4,611 research outputs found

    Atmospheric Circulation of Terrestrial Exoplanets

    Full text link
    The investigation of planets around other stars began with the study of gas giants, but is now extending to the discovery and characterization of super-Earths and terrestrial planets. Motivated by this observational tide, we survey the basic dynamical principles governing the atmospheric circulation of terrestrial exoplanets, and discuss the interaction of their circulation with the hydrological cycle and global-scale climate feedbacks. Terrestrial exoplanets occupy a wide range of physical and dynamical conditions, only a small fraction of which have yet been explored in detail. Our approach is to lay out the fundamental dynamical principles governing the atmospheric circulation on terrestrial planets--broadly defined--and show how they can provide a foundation for understanding the atmospheric behavior of these worlds. We first survey basic atmospheric dynamics, including the role of geostrophy, baroclinic instabilities, and jets in the strongly rotating regime (the "extratropics") and the role of the Hadley circulation, wave adjustment of the thermal structure, and the tendency toward equatorial superrotation in the slowly rotating regime (the "tropics"). We then survey key elements of the hydrological cycle, including the factors that control precipitation, humidity, and cloudiness. Next, we summarize key mechanisms by which the circulation affects the global-mean climate, and hence planetary habitability. In particular, we discuss the runaway greenhouse, transitions to snowball states, atmospheric collapse, and the links between atmospheric circulation and CO2 weathering rates. We finish by summarizing the key questions and challenges for this emerging field in the future.Comment: Invited review, in press for the Arizona Space Science Series book "Comparative Climatology of Terrestrial Planets" (S. Mackwell, M. Bullock, and J. Harder, editors). 56 pages, 26 figure

    Vacuum Infusion Process Development for Conformal Ablative Thermal Protection System Materials

    Get PDF
    Conformal ablators are low density composite materials comprised of a flexible carbon felt based fibrous substrate and a high surface area phenolic matrix. These materials are fabricated to near net shape by molding the substrate, placing in a rigid matched mold and infusing with liquid resin through a vacuum assisted process. The open mold process, originally developed for older rigid substrate ablators, such as PICA, wastes a substantial amount of resin. In this work, a vacuum infusion process a type of liquid composite molding where resin is directly injected into a closed mold under vacuum is advanced for conformal ablators. The process reduces waste over the state-of-the-art technique. Small, flat samples of Conformal Phenolic Impregnated Carbon Ablator are infused using the new approach and subjected to a range of curing configurations and conditions. Resulting materials are inspected for quality and compared to material produced using the standard process. Lessons learned inform subsequent plans for process scale up

    Hypertrophic olivary degeneration and palatal myoclonus from a Streptococcus intermedius infection of the brain: illustrative case

    Get PDF
    BACKGROUND: Hypertrophic olivary degeneration (HOD) is a rare condition that can occur after disruption of the Guillain-Mollaret triangle. Clinically, HOD can present with palatal myoclonus with or without oculopalatal tremor, which sometimes results in symptomatic dysphagia and/or speech abnormalities. This condition is commonly associated with vascular lesions, with only three prior reported cases of HOD resulting from intracranial abscess. OBSERVATIONS: An otherwise healthy patient developed multiple intracranial abscesses. Biopsy showed gram-positive cocci; however, culture findings were negative. Polymerase chain reaction (PCR) identified Streptococcus intermedius. The patient demonstrated palatal myoclonus and vertical nystagmus, which resulted in persistent mild dysphagia and altered speech intonation. After appropriate antimicrobial therapy with resolution of the enhancing lesions, symptoms persisted. Follow-up imaging demonstrated progressive hypertrophy of the right olive with persistent disruption of the right-sided rubro-olivo fiber pathways. LESSONS: Although HOD classically occurs after vascular insult, it can also be seen as a postinfectious sequela. Despite eradication of the infection, palatal myoclonus and oculopalatal tremor may have a persistent impact on quality of life due to impaired speech and swallowing. This case emphasizes the utility of universal PCR in detecting fastidious organisms as well as diffusion tensor imaging for characterization of disrupted fiber pathways

    Trends in the Abscopal Effect After Radiation to Spinal Metastases: A Systematic Review

    Get PDF
    Introduction: While the abscopal effect has been previously described, the phenomenon has been poorly defined with spinal metastases. This article presents the first systematic review of the abscopal effect after radiation therapy to metastatic spinal cancer, especially since the spinal column represents one of the most common metastatic locations. Methods: Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [Figure 1] in the Enhancing the QUAlity and Transparency Of health Research (EQUATOR) resources, a systematic review identified relevant studies via a computer-aided search of MEDLINE and Embase. Ten publications that met the inclusion and exclusion criteria from the PRISMA flow diagram described a total of thirteen patients. Results: Two patients in two separate articles observed the abscopal effect following radiation therapy alone to the spine. The remaining eight articles commented on the abscopal effect in the setting of both systemic and radiation therapy. Conclusion: Important findings in this review of spinal metastases include (1) abscopal effect is more commonly observed when systemic therapy includes immunomodulators; (2) abscopal effect has a higher likelihood of success when immunomodulators are administered in conjunction with or after radiation therapy to the spine; (3) higher doses of radiation in a smaller number of fractions likely increase the abscopal success; and (4) ionizing radiation to the bone marrow of the spinal column may increase circulating lymphocytes that attack cancerous lesions elsewhere in the body. These trends, however, still require further investigation with experimental and clinical studies

    A versatile Cloud Computing environment to facilitate African-European partnership in research: EO AFRICA R&D Innovation Lab

    Get PDF
    The African Framework for Research, Innovation, Communities and Applications (EO AFRICA) is an ESA initiative in collaboration with the African Union Commission that aims to foster an African-European R&D partnership facilitating the sustainable adoption of Earth Observation and related space technologies in Africa. EO AFRICA R&D Facility is the flagship of EO AFRICA with the overarching goals of enabling an active research community and promoting creative and collaborative innovation processes by providing funding, advanced training, and computing resources. The Innovation Lab is a state-of-the-art Cloud Computing infrastructure provided by the Facility to 30 research projects of African-European research tandems and participants of the capacity development activities of the Space Academy. The Innovation Lab creates new opportunities for innovative research to develop EO algorithms and applications adapted to African challenges and needs, through interactive Virtual Research Environments (VREs) with ready-to-use research and EO analysis software, and facilitated access to a wide range of analysis-ready EO datasets by leveraging the host DIAS infrastructure. The Innovation Lab is a cloud-based, user-friendly, and versatile Platform as a service (PaaS) that allows the users to develop, test, run, and optimize their research code making full use of the Copernicus DIAS infrastructure and a tailor-made interactive computing environment for geospatial analysis. Co-located data and computing services enable fast data exploitation and analysis, which in turn facilitates the utilization of multi-spectral spatiotemporal big data and machine learning methods. Each user has direct access to all online EO data available on the host DIAS (CreoDIAS), especially for Africa, and if required, can also request archived data, which is automatically retrieved and made available within a short delay. The Innovation Lab also supports user-provided in-situ data and allows access to EO data on the Cloud (e.g., other DIASes, CNES PEPS, Copernicus Hub, etc.) through a unified and easy-to-use and open-source data access API (EODAG). Because all data access and analysis are performed on the server-side, the platform does not require a fast Internet connection, and it is adapted for low bandwidth access to enable active collaboration of African – European research tandems. As a minimum configuration, each user has access to computing units with four virtual CPUs, 32 GB RAM, 100 GB local SSD storage, and 1 TB network storage. To a limited extent and for specific needs (e.g., AI applications like Deep Learning), GPU-enabled computing units are also provided. The user interface of the Innovation Lab allows the use of interactive Jupyter notebooks through the JupyterLab environment, which is served by a JupyterHub deployment with improved security and scalability features. For advanced research code development purposes, the Innovation Lab features a web-based VS Code integrated development environment, which provides specialized tools for programming in different languages, such as Python and R. Code analytics tools are also available for benchmarking, code profiling, and memory/performance monitoring. For specific EO workflows that require exploiting desktop applications (e.g., ESA SNAP, QGIS) for pre-processing, analysis, or visualization purposes, the Innovation Lab provides a web-based remote desktop with ready-to-use EO desktop applications. The users can also customize their working environment by using standard package managers. As endorsed by the European Commission Open Science approach, data and code sharing and versioning are crucial to allow reuse and reproduction of the algorithms, workflows, and results. In this context, the Innovation Lab has tools integrated into its interactive development environment that provide direct access to code repositories and allow easy version control. Although public code repositories (e.g., Github) are advised for better visibility, the Innovation Lab also includes a dedicated code repository to support the users' particular needs (e.g., storage of sensitive information). The assets (e.g., files, folders) stored on the platform can be easily accessed and shared externally through the FileBrowser tool. Besides providing a state-of-the-art computing infrastructure, the Innovation Lab also includes other necessary services to ensure a comfortable virtual research experience. All research projects granted by the EO AFRICA R&D Facility receive dedicated technical support for the Innovation Lab facilities. Scientific support and advice from senior researchers and experts for developing geospatial computing workflows are also provided. Users are able to request support contacting a helpdesk via a dedicated ticketing and chat system. After a 6-month development and testing period, the Innovation Lab became operational in September 2021. The first field testing of the platform took place in November 2021 during a 3-day hackathon jointly organized by EO AFRICA R&D, GMES & Africa, and CURAT as part of the AfricaGIS 2021 conference. Forty participants utilized the platform to develop innovative solutions to food security and water resources challenges, such as the impact of the COVID-19 pandemic on agricultural production or linking the decrease in agricultural production to armed conflicts. The activity was successful and similar ones are expected to be organized during major GIS and EO conferences in Africa during the lifetime of the project. Thirty research projects of African-European research tandems granted by the Facility will utilize the Innovation Lab to develop innovative and open-source EO algorithms and applications, preferably as interactive notebooks, adapted to African solutions to African challenges in food security and water scarcity by leveraging cutting-edge cloud-based data access and computing infrastructure. The call for the first 15 research projects was published in November 2021, and the projects are expected to start using the Innovation Lab in February 2022. In parallel, the Innovation Lab provides the computing environment for the capacity development activities of the EO AFRICA R&D Facility, which are organized under the umbrella of EO AFRICA Space Academy. These capacity development activities include several MOOCs, webinars, online and face-to-face courses designed and tailored to improve the knowledge and skills of African researchers in the utilization of Cloud Computing technology to work with EO data. Selected participants of the capacity development activities will use the Innovation Lab during their training. Moreover, the instructors in the Facility use the Innovation Lab to develop the training materials for the Space Academy. Access to the Innovation Lab will also be granted to individual researchers and EO experts depending on the use case and resource availability. Application for access can be made easily through the EO AFRICA R&D web portal after becoming a member of the EO AFRICA Community.This study is funded by ESA Contract No. 4000133905/21/I-EF

    The Effect of Psyllium Husk on Intestinal Microbiota in Constipated Patients and Healthy Controls

    Get PDF
    Psyllium is a widely used treatment for constipation. It traps water in the intestine increasing stool water, easing defaecation and altering the colonic environment. We aimed to assess the impact of psyllium on faecal microbiota, whose key role in gut physiology is being increasingly recognised. We performed two randomised, placebo-controlled, double-blinded trials comparing 7 days of psyllium with a placebo (maltodextrin) in 8 healthy volunteers and 16 constipated patients respectively. We measured the patients’ gastrointestnal (GI) transit, faecal water content, short-chain fatty acid (SCFA) and the stool microbiota composition. While psyllium supplement had a small but significant effect on the microbial composition of healthy adults (increasing Veillonella and decreasing Subdoligranulum), in constipated subjects there were greater effects on the microbial composition (increased Lachnospira, Faecalibacterium, Phascolarctobacterium, Veillonella and Sutterella and decreased uncultured Coriobacteria and Christensenella) and alterations in the levels of acetate and propionate. We found several taxa to be associated with altered GI transit, SCFAs and faecal water content in these patients. Significant increases in three genera known to produce butyrate, Lachnospira, Roseburia and Faecalibacterium, correlated with increased faecal water. In summary, psyllium supplementation increased stool water and this was associated with significant changes in microbiota, most marked in constipated patients

    Complications, revision fusions, readmissions, and utilization over a 1-year period after bone morphogenetic protein use during primary cervical spine fusions

    Get PDF
    Nationwide estimates examining Bone Morphogenetic Protein (BMP) use with cervical spine fusions have been limited to perioperative outcomes

    Heterotrimeric G-protein Signaling Is Critical to Pathogenic Processes in Entamoeba histolytica

    Get PDF
    Heterotrimeric G-protein signaling pathways are vital components of physiology, and many are amenable to pharmacologic manipulation. Here, we identify functional heterotrimeric G-protein subunits in Entamoeba histolytica, the causative agent of amoebic colitis. The E. histolytica Gα subunit EhGα1 exhibits conventional nucleotide cycling properties and is seen to interact with EhGβγ dimers and a candidate effector, EhRGS-RhoGEF, in typical, nucleotide-state-selective fashions. In contrast, a crystal structure of EhGα1 highlights unique features and classification outside of conventional mammalian Gα subfamilies. E. histolytica trophozoites overexpressing wildtype EhGα1 in an inducible manner exhibit an enhanced ability to kill host cells that may be wholly or partially due to enhanced host cell attachment. EhGα1-overexpressing trophozoites also display enhanced transmigration across a Matrigel barrier, an effect that may result from altered baseline migration. Inducible expression of a dominant negative EhGα1 variant engenders the converse phenotypes. Transcriptomic studies reveal that modulation of pathogenesis-related trophozoite behaviors by perturbed heterotrimeric G-protein expression includes transcriptional regulation of virulence factors and altered trafficking of cysteine proteases. Collectively, our studies suggest that E. histolytica possesses a divergent heterotrimeric G-protein signaling axis that modulates key aspects of cellular processes related to the pathogenesis of this infectious organism
    • …
    corecore