30 research outputs found

    Etude de l’exosphùre de Mercure par le spectromùtre PHEBUS de la mission BepiColombo

    No full text
    Mercury is the least explored of the inner planets, only three spacecraft have explored it. Mariner 10 observed the planet during three close encounters in 1974 and 1975, unveiling a very thin atmosphere surrounding the planet, somewhat similar to that of the Moon, including hydrogen (H) and helium (He). Sodium (Na), potassium (K) and calcium (Ca) were later detected in Mercury’s exosphere with ground based telescopes. The MESSENGER mission, launched in 2004, not only performed three close encounters of the planet but also orbited it for four years. The mission added magnesium (Mg) and manganese (Mn) to the list of species detected in Mercury’s exosphere. Iron (Fe) and aluminum (Al) were also discovered from ground-based observations around the same period.BepiColombo is the third mission to visit Mercury. Launched in 2018, the ESA-JAXA joint mission is set to perform six flybys of Mercury before the insertion in orbit around the planet at the end of 2025. Three flybys of Mercury have already been performed, during which PHEBUS (Probing the Hermean Exosphere By Ultraviolet Spectroscopy) was able to observe the surfacebounded exosphere of Mercury. The instrument consists of two UV detectors (EUV and FUV) and two visible channels (c404 and c422). The c404 channel is dedicated to the K emission line at 404.7 nm while the c422 channel is dedicated to the Ca emission line at 422.8 nm. The geometry of observation was similar during the first two flybys, the spacecraft approaching the planet from its nightside, crossing its shadow before moving to its dayside. The closest approach to the surface occurred in the shadow of Mercury at an altitude of ∌200 km. PHEBUS was pointing northward, slightly antisunward.The count rate registered by both channels depicts the geometry of observation, notably the transit in the shadow of Mercury. The maximum is reached shortly after the spacecraft went out of eclipse. The count rate then decreases as the spacecraft moved away from Mercury. During the flybys, both signals are polluted by sporadic spikes whose origin remains uncertain.Despite these spikes, Ca was clearly detected by the c422 channel. The c422 signal shows not only an enhancement of Ca at dawn but also a very extensive Ca corona on the morning side, which was not reported by MESSENGER. The scale height deduced from our Ca profiles (2,500–2,800 km) is in agreement with the value reported by MESSENGER at similar true anomaly angle. Using the Chamberlain model, I determined a high temperature at the exobase (>50,000 K), in agreement with MESSENGER results. Both the large scale height and temperature at the exobase imply a very energetic release process. I also report a day/night asymmetry in the Ca exosphere that could indicate that the source of Ca is predominantly on the dayside or be the consequence of a shift of the main source of Ca away from the dawn region. The next step consists in using a 3D exospheric model that will include the effects of photoionization and non uniform distribution of Ca. Finally, PHEBUS pointing during the flybys did not allow to observe the potential cold component of Ca as the altitudes 50 000K), ce qui est en accord avec les rĂ©sultats de MESSENGER. La grande hauteur d’échelle et la tempĂ©rature Ă  l’exobase Ă©levĂ©e impliquent un processus de libĂ©ration trĂšs Ă©nergĂ©tique. Les donnĂ©es semblent Ă©galement indiquer une asymĂ©trie jour/nuit qui pourrait signifier que la source de Ca est principalement du cĂŽtĂ© jour ou ĂȘtre la consĂ©quence d’un dĂ©calage de la source de Ca par rapport Ă  la rĂ©gion de l’aube. La prochaine Ă©tape consiste Ă  utiliser un modĂšle exosphĂ©rique 3D prenant en compte la photoionisation et la distribution non uniforme du Ca. Enfin, le pointage de PHEBUS lors de ces deux premiers survols n’a pas permis d’observer la potentielle composante froide du Ca puisque les altitudes <200 km n’ont pas Ă©tĂ© explorĂ©es.Le canal c404 a dĂ©tectĂ© une ou plusieurs espĂšces Ă  basse altitude cĂŽtĂ© matin lors des survols, potentiellement du K ou du Mn. Cette ligne d’émission du K n’a jamais Ă©tĂ© dĂ©tectĂ©e par MESSENGER.Quant au Mn, MESSENGER ne l’a pas observĂ© continuellement, il n’a Ă©tĂ© dĂ©tectĂ© qu’à certaines saisons et dans certaines rĂ©gions de l’exosphĂšre.Ces conditions de dĂ©tection sont bien diffĂ©rentes de celles de BepiColombo.Il est donc difficile d’identifier avec certitude l’espĂšce dĂ©tectĂ©e. D’autres observations sont nĂ©cessaires.On peut tout de mĂȘme mentionner que l’échelle de hauteur dĂ©duite du profil c404 est ∌135 km et que le modĂšle de Chamberlain appliquĂ© au profil c404 semble indiquer une tempĂ©rature Ă  l’exobase <3000 K

    Etude de l’exosphùre de Mercure par le spectromùtre PHEBUS de la mission BepiColombo

    No full text
    Mercure est la planĂšte tellurique la moins explorĂ©e du systĂšme solaire, trois missions seulement l’ont survolĂ©e. Mariner 10 a effectuĂ© trois survols de la planĂšte en 1974 et 1975, dĂ©couvrant une atmosphĂšre trĂšs mince, similaire Ă  celle de la Lune, contenant de l’hĂ©lium (He) et de l’hydrogĂšne (H). Le sodium (Na), le potassium (K) et le calcium (Ca) ont Ă©tĂ© dĂ©tectĂ©s plus tard Ă  partir d’observations depuis la Terre. La mission MESSENGER, lancĂ©e en 2004, a non seulement survolĂ© Mercure Ă  trois reprises mais a Ă©galement orbitĂ© la planĂšte durant quatre ans. Elle a dĂ©tectĂ© deux nouvelles espĂšces, le magnĂ©sium (Mg) et le manganĂšse (Mn). En parallĂšle, deux autres espĂšces ont Ă©tĂ© dĂ©couvertes grĂące Ă  des observations depuis la Terre : le fer (Fe) et l’aluminium (Al). BepiColombo est la troisiĂšme mission Ă  destination de Mercure. LancĂ©e en 2018, la mission conjointe ESA JAXA doit effectuer six survols de Mercure avant de s’insĂ©rer en orbite fin 2025. Trois survols de Mercure ont dĂ©jĂ  Ă©tĂ© rĂ©alisĂ©s lors desquels PHEBUS (Probing the Hermean Exosphere By Ultraviolet Spectroscopy) a pu observer l’exosphĂšre de Mercure. L’instrument est composĂ© de deux dĂ©tecteurs UV (EUV et FUV) et de deux canaux visibles (c404 et c422). Le canal c404 est dĂ©diĂ© Ă  la ligne d’émission du K Ă  404,7 nm tandis que le canal c422 est dĂ©diĂ© Ă  la ligne d’émission du Ca Ă  422,8 nm. La gĂ©omĂ©trie d’observation des deux premiers survols est similaire, la sonde approchant la planĂšte cĂŽtĂ© nuit, traversant son ombre avant de se diriger cĂŽtĂ© jour. La sonde s’est approchĂ©e Ă  ∌200 km de la surface au point le plus proche cĂŽtĂ© nuit. PHEBUS pointait vers le nord, dans une direction opposĂ©e au soleil. Le taux de comptage enregistrĂ© par les deux canaux visibles illustre la gĂ©omĂ©trie d’observation, notamment le passage dans l’ombre de Mercure. Le maximum est atteint peu aprĂšs la sortie d’éclipse. Le taux de comptage diminue ensuite Ă  mesure que la sonde s’éloigne de Mercure. Lors des survols, les signaux des deux canaux sont polluĂ©s par des pics sporadiques dont l’origine reste incertaine. MalgrĂ© ces pics, le canal c422 a clairement dĂ©tectĂ© du Ca. Le signal c422 montre non seulement une concentration de Ca Ă  l’aube mais Ă©galement une couronne de Ca trĂšs Ă©tendue du cĂŽtĂ© matin qui n’a pas Ă©tĂ© rapportĂ©e par MESSENGER. La hauteur d’échelle dĂ©duite de nos profils (2500-2800 km) est en accord avec la valeur rapportĂ©e par MESSENGER Ă  un angle d’anomalie vraie similaire. En utilisant le modĂšle de Chamberlain, j’ai dĂ©terminĂ© une tempĂ©rature Ă  l’exobase trĂšs Ă©levĂ©e (>50 000K), ce qui est en accord avec les rĂ©sultats de MESSENGER. La grande hauteur d’échelle et la tempĂ©rature Ă  l’exobase Ă©levĂ©e impliquent un processus de libĂ©ration trĂšs Ă©nergĂ©tique. Les donnĂ©es semblent Ă©galement indiquer une asymĂ©trie jour/nuit qui pourrait signifier que la source de Ca est principalement du cĂŽtĂ© jour ou ĂȘtre la consĂ©quence d’un dĂ©calage de la source de Ca par rapport Ă  la rĂ©gion de l’aube. La prochaine Ă©tape consiste Ă  utiliser un modĂšle exosphĂ©rique 3D prenant en compte la photoionisation et la distribution non uniforme du Ca. Enfin, le pointage de PHEBUS lors de ces deux premiers survols n’a pas permis d’observer la potentielle composante froide du Ca puisque les altitudes 50,000 K), in agreement with MESSENGER results. Both the large scale height and temperature at the exobase imply a very energetic release process. I also report a day/night asymmetry in the Ca exosphere that could indicate that the source of Ca is predominantly on the dayside or be the consequence of a shift of the main source of Ca away from the dawn region. The next step consists in using a 3D exospheric model that will include the effects of photoionization and non uniform distribution of Ca. Finally, PHEBUS pointing during the flybys did not allow to observe the potential cold component of Ca as the altitudes <200 km were not explored.The c404 channel detected species at low altitudes on the morning side during the flybys, potentially K or Mn. This K emission line was never detected by MESSENGER. As for Mn, MESSENGER has not observed it continuously, its detection was confined to certain seasons and to certain regions of the exosphere. These detection conditions are very different from those of BepiColombo. It is therefore difficult to identify with certainty the detected species. Further observations are necessary. Note that the scale height deduced from the c404 profile is ∌135 km and that the Chamberlain model applied to the c404 profile seems to indicate a temperature at the exobase <3000 K

    Etude de l’exosphùre de Mercure par le spectromùtre PHEBUS de la mission BepiColombo

    No full text
    Mercury is the least explored of the inner planets, only three spacecraft have explored it. Mariner 10 observed the planet during three close encounters in 1974 and 1975, unveiling a very thin atmosphere surrounding the planet, somewhat similar to that of the Moon, including hydrogen (H) and helium (He). Sodium (Na), potassium (K) and calcium (Ca) were later detected in Mercury’s exosphere with ground based telescopes. The MESSENGER mission, launched in 2004, not only performed three close encounters of the planet but also orbited it for four years. The mission added magnesium (Mg) and manganese (Mn) to the list of species detected in Mercury’s exosphere. Iron (Fe) and aluminum (Al) were also discovered from ground-based observations around the same period.BepiColombo is the third mission to visit Mercury. Launched in 2018, the ESA-JAXA joint mission is set to perform six flybys of Mercury before the insertion in orbit around the planet at the end of 2025. Three flybys of Mercury have already been performed, during which PHEBUS (Probing the Hermean Exosphere By Ultraviolet Spectroscopy) was able to observe the surfacebounded exosphere of Mercury. The instrument consists of two UV detectors (EUV and FUV) and two visible channels (c404 and c422). The c404 channel is dedicated to the K emission line at 404.7 nm while the c422 channel is dedicated to the Ca emission line at 422.8 nm. The geometry of observation was similar during the first two flybys, the spacecraft approaching the planet from its nightside, crossing its shadow before moving to its dayside. The closest approach to the surface occurred in the shadow of Mercury at an altitude of ∌200 km. PHEBUS was pointing northward, slightly antisunward.The count rate registered by both channels depicts the geometry of observation, notably the transit in the shadow of Mercury. The maximum is reached shortly after the spacecraft went out of eclipse. The count rate then decreases as the spacecraft moved away from Mercury. During the flybys, both signals are polluted by sporadic spikes whose origin remains uncertain.Despite these spikes, Ca was clearly detected by the c422 channel. The c422 signal shows not only an enhancement of Ca at dawn but also a very extensive Ca corona on the morning side, which was not reported by MESSENGER. The scale height deduced from our Ca profiles (2,500–2,800 km) is in agreement with the value reported by MESSENGER at similar true anomaly angle. Using the Chamberlain model, I determined a high temperature at the exobase (>50,000 K), in agreement with MESSENGER results. Both the large scale height and temperature at the exobase imply a very energetic release process. I also report a day/night asymmetry in the Ca exosphere that could indicate that the source of Ca is predominantly on the dayside or be the consequence of a shift of the main source of Ca away from the dawn region. The next step consists in using a 3D exospheric model that will include the effects of photoionization and non uniform distribution of Ca. Finally, PHEBUS pointing during the flybys did not allow to observe the potential cold component of Ca as the altitudes 50 000K), ce qui est en accord avec les rĂ©sultats de MESSENGER. La grande hauteur d’échelle et la tempĂ©rature Ă  l’exobase Ă©levĂ©e impliquent un processus de libĂ©ration trĂšs Ă©nergĂ©tique. Les donnĂ©es semblent Ă©galement indiquer une asymĂ©trie jour/nuit qui pourrait signifier que la source de Ca est principalement du cĂŽtĂ© jour ou ĂȘtre la consĂ©quence d’un dĂ©calage de la source de Ca par rapport Ă  la rĂ©gion de l’aube. La prochaine Ă©tape consiste Ă  utiliser un modĂšle exosphĂ©rique 3D prenant en compte la photoionisation et la distribution non uniforme du Ca. Enfin, le pointage de PHEBUS lors de ces deux premiers survols n’a pas permis d’observer la potentielle composante froide du Ca puisque les altitudes <200 km n’ont pas Ă©tĂ© explorĂ©es.Le canal c404 a dĂ©tectĂ© une ou plusieurs espĂšces Ă  basse altitude cĂŽtĂ© matin lors des survols, potentiellement du K ou du Mn. Cette ligne d’émission du K n’a jamais Ă©tĂ© dĂ©tectĂ©e par MESSENGER.Quant au Mn, MESSENGER ne l’a pas observĂ© continuellement, il n’a Ă©tĂ© dĂ©tectĂ© qu’à certaines saisons et dans certaines rĂ©gions de l’exosphĂšre.Ces conditions de dĂ©tection sont bien diffĂ©rentes de celles de BepiColombo.Il est donc difficile d’identifier avec certitude l’espĂšce dĂ©tectĂ©e. D’autres observations sont nĂ©cessaires.On peut tout de mĂȘme mentionner que l’échelle de hauteur dĂ©duite du profil c404 est ∌135 km et que le modĂšle de Chamberlain appliquĂ© au profil c404 semble indiquer une tempĂ©rature Ă  l’exobase <3000 K

    EUV reflectance of Mercury measured by BepiColombo/PHEBUS

    No full text
    International audienceBepiColombo will be inserted around Mercury in December 2025, but during the cruise phase, several opportunities to perform disk-integrated observations of Mercury are possible. The first observations of the illuminated surface of Mercury by PHEBUS (Probing of Hermean Environment by Ultraviolet Spectroscopy) with the EUV channel ( ∌ 55-160 nm) were done on 9 and 10 Oct 2021, few days after the first flyby, from a distance of ∌.03 AU at a phase angle of 72°. The solar reflected spectrum is detected from 80 nm to 160 nm. We present the EUV reflectance of Mercury derived from these observations and compare its spectral variations to the measurements by Mariner 10 done at few wavelengths in this spectral range and to the MESSENGER observations done at longer wavelengths

    PHEBUS observations of the He 58.4 nm emission during Bepi Colombo's first Mercury Flyby

    No full text
    International audienceWe present observations of the He 58.4 nm emission performed with the EUV channel of the PHEBUS spectrometer on board ESA’s Mercury Planetary Orbiter during Bepi Colombo’s first Mercury Flyby in October 2021. We describe the data analysis and PHEBUS EUV calibration based on interplanetary He 58.4 nm data from observations during the cruise. We discuss the results in comparison with Mariner 10 measurements at 58.4 nm and models of Mercury’s exosphere

    PHEBUS observations of the He 58.4 nm emission during Bepi Colombo's first Mercury Flyby

    No full text
    International audienceWe present observations of the He 58.4 nm emission performed with the EUV channel of the PHEBUS spectrometer on board ESA’s Mercury Planetary Orbiter during Bepi Colombo’s first Mercury Flyby in October 2021. We describe the data analysis and PHEBUS EUV calibration based on interplanetary He 58.4 nm data from observations during the cruise. We discuss the results in comparison with Mariner 10 measurements at 58.4 nm and models of Mercury’s exosphere

    EUV reflectance of Mercury measured by BepiColombo/PHEBUS

    No full text
    International audienceBepiColombo will be inserted around Mercury in December 2025, but during the cruise phase, several opportunities to perform disk-integrated observations of Mercury are possible. The first observations of the illuminated surface of Mercury by PHEBUS (Probing of Hermean Environment by Ultraviolet Spectroscopy) with the EUV channel ( ∌ 55-160 nm) were done on 9 and 10 Oct 2021, few days after the first flyby, from a distance of ∌.03 AU at a phase angle of 72°. The solar reflected spectrum is detected from 80 nm to 160 nm. We present the EUV reflectance of Mercury derived from these observations and compare its spectral variations to the measurements by Mariner 10 done at few wavelengths in this spectral range and to the MESSENGER observations done at longer wavelengths

    Observations of Mercury’s Exosphere during BepiColombo First Mercury Flyby with PHEBUS’ visible channels

    No full text
    International audienceDuring the first flyby of Mercury with BepiColombo in October 2021, the ultraviolet spectrometer PHEBUS (Probing of Hermean Environment By Ultraviolet Spectroscopy) was able to observe with the two visible channels centered at 404 nm (K line) and 422 nm (Ca line). The observation started 30 minutes before Closest Approach and lasted one hour. The results clearly depict the geometry of observation, the spacecraft moving from the nightside of Mercury to its dayside. We also see some bursts on the count rate after the exit of Mercury’s shadow, and discuss possible correlations with dust particles or the crossing of magnetospheric structures. We distinctly detect Calcium at 422nm and compare these results with MESSENGER data and an exospheric model

    PHEBUS observations of the He 58.4 nm emission during Bepi Colombo's first Mercury Flyby

    No full text
    International audienceWe present observations of the He 58.4 nm emission performed with the EUV channel of the PHEBUS spectrometer on board ESA’s Mercury Planetary Orbiter during Bepi Colombo’s first Mercury Flyby in October 2021. We describe the data analysis and PHEBUS EUV calibration based on interplanetary He 58.4 nm data from observations during the cruise. We discuss the results in comparison with Mariner 10 measurements at 58.4 nm and models of Mercury’s exosphere
    corecore