46 research outputs found

    A combined methodology for reconstructing source-to-sink basin evolution, exemplified by the Triassic Songpan–Ganzi basin, central China

    Get PDF
    Source-to-sink evolution of a basin is a key to understand sedimentary processes, especially in a complex regional orogenic setting. Detrital zircon populations can be traced from their primary sources to their depositional settings. The resulting interpretations are enhanced by calculation of the adjacent orogen's paleoaltimetry, which provides additional insights into paleogeography. In this study, we present a combined methodology which aims to reconstruct source-to-sink evolution by the analysis of detrital zircon age distribution in sandstones, together with the calculation of paleo-elevation of surrounding orogens based on the chemical compositions of coeval magmatic rocks. We test the method using detrital zircon U–Pb geochronological data sets from the Triassic Songpan–Ganzi basin in central China, combined with whole-rock geochemical data from intermediate-composition magmatic rocks in adjacent crustal blocks. Application of the combined methodology supports a syn-collisional basin model for the formation of the Triassic Songpan-Ganzi basin in preference to a continental back-arc basin. The clastic sediments, mainly deep-marine turbidites, accumulated in a remnant Paleotethyan Ocean that was surrounded by the converging North China Block, South China Block, East Kunlun Orogenic Belt and the Qiangtang Block. The North China Block and the North Qaidam Block were major proto-sources of detrital zircons to the basin, contributing on average 12 % and 15 %, respectively. Triassic magmatic rocks in the East Kunlun and Qiangtang regions were major sources of igneous zircons, up to 68 % for the former and up to 56 % for the latter. Despite being located at a calculated elevation of ca. 4000 m, the Qinling Orogenic Belt contributed only ca. <10 % of the zircons, mostly restricted to the eastern depocenter of the basin. In contrast, supply from the North Qiangtang Block, despite its calculated lower elevation (1000–3000 m), accounts for 2–10 % of the detrital zircons in the basin, suggesting high erosion rates of this block. The minimal supply of zircons from the South China Block, restricted to 3–6 % in the central and western depocenters, is inconsistent with the zircon abundances predicted in the alternative back-arc basin model of the Songpan–Ganzi basin

    Pleistocene terrace deposition related to tectonically controlled surface uplift: an example of the Kyrenia Range lineament in the northern part of Cyprus

    Get PDF
    AbstractIn this study, we consider how surface uplift of a narrow mountain range has interacted with glacial-related sea-level cyclicity and climatic change to produce a series of marine and non-marine terrace systems. The terrace deposits of the Kyrenia Range record rapid surface uplift of a long-lived tectonic lineament during the early Pleistocene, followed by continued surface uplift at a reduced rate during mid-late Pleistocene. Six terrace depositional systems are distinguished and correlated along the northern and southern flanks of the range, termed K0 to K5. The oldest and highest (K0 terrace system) is present only within the central part of the range. The K2–K5 terrace systems formed later, at sequentially lower levels away from the range. The earliest stage of surface uplift (K0 terrace system) comprises lacustrine carbonates interbedded with mass-flow facies (early Pleistocene?). The subsequent terrace system (K1) is made up of colluvial conglomerate and aeolian dune facies on both flanks of the range. The later terrace systems (K2 to K5) each begin with a basal marine deposit, interpreted as a marine transgression. Deltaic conglomerates prograded during inferred global interglacial stages. Overlying aeolian dune facies represent marine regressions, probably related to global glacial stages. Each terrace depositional system was uplifted and preserved, followed by subsequent deposits at progressively lower topographic levels. Climatic variation during interglacial–glacial cycles and autocyclic processes also exerted an influence on deposition, particularly on short-period fluvial and aeolian deposition

    Regional and Petroleum Geology of the Black Sea Region

    No full text
    corecore