7,863 research outputs found

    Developing Future UK Energy Performance Standards: The St Nicholas Court project, Final Report

    Get PDF
    The St Nicholas Court Project was set up to explore the implications of an enhanced energy performance standard for new housing for the design, construction and performance of timber framed dwellings. The energy performance standard, EPS08, is modelled on proposals made by the DETR in June 2000 for a possible review of Part L of the Building Regulations in the second half of the present decade. The overall goal of the project was to support the next revision of Part L through an enhanced body of qualitative and quantitative evidence on options and impacts. The seeds of the project were contained in a report – Towards Sustainable Housing - commissioned by Joseph Rowntree Foundation at the start of the last review of this part of the Building Regulations. The project itself has been based on the St Nicholas Court Development which involves the design and construction of a group of 18 low energy and affordable dwellings on a brown field site in York (see site plan below). The research project was established in two stages. Initial funding was provided by the Joseph Rowntree Foundation in the spring of 1999. This ensured the involvement of the research team from the outset of the development process. Additional funding was provided from late 2000 by the Housing Corporation and by the DETR through the Partners in Innovation programme (responsibility for which now lies with the DTI). The research project was originally divided into five phases – project definition, design, construction, occupation, and communication and dissemination. Delays in site acquisition initially allowed the design phase to be extended, but ultimately forced the abandonment of the construction and occupation phases, and the scaling down of the communication and dissemination phase. Despite the delays, the development itself will now go ahead, with construction starting in mid-2003

    Horizontal gene transfer converts non-toxigenic Clostridium difficile strains into toxin producers.

    Get PDF
    Clostridium difficile is a major nosocomial pathogen and the main causative agent of antibiotic-associated diarrhoea. The organism produces two potent toxins, A and B, which are its major virulence factors. These are chromosomally encoded on a region termed the pathogenicity locus (PaLoc), which also contains regulatory genes, and is absent in non-toxigenic strains. Here we show that the PaLoc can be transferred from the toxin-producing strain, 630Δerm, to three non-toxigenic strains of different ribotypes. One of the transconjugants is shown by cytotoxicity assay to produce toxin B at a similar level to the donor strain, demonstrating that a toxigenic C. difficile strain is capable of converting a non-toxigenic strain to a toxin producer by horizontal gene transfer. This has implications for the treatment of C. difficile infections, as non-toxigenic strains are being tested as treatments in clinical trials

    Peptidomimetic inhibitors of N-myristoyltransferase from human malaria and leishmaniasis parasites

    Get PDF
    N-Myristoyltransferase (NMT) has been shown to be essential in Leishmania and subsequently validated as a drug target in Plasmodium. Herein, we discuss the use of antifungal NMT inhibitors as a basis for inhibitor development resulting in the first sub-micromolar peptidomimetic inhibitors of Plasmodium and Leishmania NMTs. High-resolution structures of these inhibitors with Plasmodium and Leishmania NMTs permit a comparative analysis of binding modes, and provide the first crystal structure evidence for a ternary NMT-Coenzyme A/myristoylated peptide product complex

    Mood responses and regulation strategies used during COVID-19 among boxers and coaches

    Get PDF
    © 2021 The Authors. Published by Frontiers Media. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.3389/fpsyg.2021.624119The COVID-19 pandemic brought unprecedented changes to daily life and in the first wave in the UK, it led to a societal shutdown including playing sport and concern was placed for the mental health of athletes. Identifying mood states experienced in lockdown and self-regulating strategies is useful for the development of interventions to help mood management. Whilst this can be done on a general level, examination of sport-specific effects and the experience of athletes and coaches can help develop interventions grounded in real world experiences. The present study investigated perceived differences in mood states of boxers before and during COVID-19 isolation in the first lockdown among boxers. Boxing is an individual and high-contact sport where training tends to form a key aspect of their identity. Boxers develop close relationships with their coach and boxing. Hence boxers were vulnerable to experiencing negative mood, and support via the coach was potentially unavailable. Participants were 58 experienced participants (44 boxers, male n = 33, female n = 11; 14 boxing coaches, male n = 11, female n = 3). Boxers completed the Brunel Mood Scale to assess mood before COVID-19 using a retrospective approach and during COVID-19 using a “right now” time frame. Boxers responded to open-ended questions to capture mood regulation strategies used. Coaches responded to open ended questions to capture how they helped regulate boxer’s mood. MANOVA results indicated a large significant increase in the intensity of unpleasant moods (anger, confusion, depression, fatigue, and tension) and reduction in vigor during COVID-19 (d = 0.93). Using Lane and Terry (2000) conceptual framework, results showed participants reporting depressed mood also reported an extremely negative mood profile as hypothesized. Qualitative data indicated that effective mood-regulation strategies used included maintaining close coach-athlete contact and helping create a sense of making progress in training. When seen collectively, findings illustrate that mood state responses to COVID-19 were severe. It is suggested that that active self-regulation and self-care should be a feature of training programmes to aid coaches and boxers in regulating mood when faced with severe situational changes.Published versio

    Observation and Simulation of Solid Sedimentary Flux: Examples From Northwest Africa

    Full text link
    The sedimentary archive preserved at passive margins provides important clues about the evolution of continental topography. For example, histories of African uplift, erosion, and deposition of clastic sedimentary rock provide information about mantle convection. Furthermore, relating histories of uplift and erosion from regions where sediment is generated to measurements of efflux is important for understanding basin evolution and the distribution of natural resources. We focus on constraining Mesozoic to Recent solid sedimentary flux to northwest Africa's passive margin, which today is fed by rivers draining dynamically supported topography. Histories of sedimentary flux are calculated by mapping stratigraphy using seismic reflection and well data courtesy of Tullow Oil Plc and TGS. Stratigraphic ages, conversion from two-way time to depth and compaction, are parameterized using biostratigraphic and check-shot records from exploration, International Ocean Discovery Program and Deep Sea Drilling Project wells. Results indicate that Late Cretaceous to Oligocene (∼100–23 Ma) sedimentary flux decreased gradually. A slight increase in Neogene sedimentary flux is observed, which is concomitant with a change from carbonate to clastic sedimentation. Pliocene to Recent (∼5–0 Ma) flux increased by an order of magnitude. This history of sedimentary flux and facies change is similar to histories observed at other African deltas. To constrain sources of sedimentary flux, 14,700 longitudinal river profiles were inverted to calculate a history of continental uplift. These results were used to parameterize a simple “source-to-sink” model of fluvial erosion and sedimentary efflux. Results suggest that increased clastic flux to Africa's deltas from ∼30 Ma was driven by denudation induced by dynamic support

    Microbial Communities in a High Arctic Polar Desert Landscape

    Get PDF
    The High Arctic is dominated by polar desert habitats whose microbial communities are poorly understood. In this study, we used next generation sequencing to describe the α- and β-diversity of microbial communities in polar desert soils from the Kongsfjorden region of Svalbard. Ten phyla dominated the soils and accounted for 95% of all sequences, with the Proteobacteria, Actinobacteria, and Chloroflexi being the major lineages. In contrast to previous investigations of Arctic soils, relative Acidobacterial abundances were found to be very low as were the Archaea throughout the Kongsfjorden polar desert landscape. Lower Acidobacterial abundances were attributed to characteristic circumneutral soil pHs in this region, which has resulted from the weathering of underlying carbonate bedrock. In addition, we compared previously measured geochemical conditions as possible controls on soil microbial communities. Phosphorus, pH, nitrogen, and calcium levels all significantly correlated with β-diversity, indicating landscape-scale lithological control of available nutrients, which in turn, significantly influenced soil community composition. In addition, soil phosphorus and pH significantly correlated with α-diversity, particularly with the Shannon diversity and Chao 1 richness indices
    corecore