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Abstract 24 

First-order reversal curve (FORC) diagrams of synthetic binary mixtures with single-domain, vortex 25 

state, and multi-domain end members (EMs) were analyzed using principal component analysis 26 

(FORC-PCA). Mixing proportions derived from FORC-PCA are shown to deviate systematically 27 

from the known weight percent of EMs, which is caused by the lack of reversible magnetization 28 

contributions to the FORC distribution. The error in the mixing proportions can be corrected by 29 

applying PCA to the raw FORCs, rather than to the processed FORC diagram, thereby capturing 30 

both reversible and irreversible contributions to the signal. Here we develop a new practical 31 

implementation of the FORC-PCA method that enables quantitative unmixing to be performed 32 

routinely on suites of FORC diagrams with up to four distinct EMs. The method provides access not 33 

only to the processed FORC diagram of each EM, but also to reconstructed FORCs, which enables 34 

objective criteria to be defined that aid identification of physically realistic EMs. We illustrate 35 

FORC-PCA with examples of quantitative unmixing of magnetic components that will have 36 

widespread applicability in paleomagnetism and environmental magnetism. 37 

 38 

1. Introduction 39 

Natural samples contain magnetic minerals with a wide range of grain sizes, domain states, 40 

coercivity distributions, anisotropies, and interaction fields. First-order reversal curve (FORC) 41 

diagrams provide a powerful method to characterize all these aspects of the magnetic mineralogy 42 

(Pike et al., 1999; Roberts et al., 2000; Roberts et al., 2014), although their interpretation in the 43 

literature is often based on qualitative assessments and empirical ‘fingerprinting’. Developments in 44 

theoretical modelling (Muxworthy et al., 2004; Newell, 2005; Egli, 2006; Harrison & Lascu, 2014; 45 

Roberts et al., 2017), new measurement protocols (Zhao et al., 2015, 2017), and new analysis 46 

methods (Egli, 2013; Egli & Winklhofer, 2014; Heslop et al., 2014) have placed the processing and 47 

interpretation of FORC diagrams onto a firm physical footing, which provides the opportunity for a 48 

more quantitative approach to rock magnetic characterization. Application of principal component 49 
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analysis (Jolliffe 2002) to analyze entire sets of FORC diagrams (FORC-PCA) was introduced by 50 

Lascu et al. (2015) as a quantitative method to unmix a suite of related samples into a linear 51 

combination of up to four end members (EMs). The method has been applied successfully to unmix 52 

the biogenic and detrital magnetic components of a sediment core from the Rockall Trough 53 

(Channell et al., 2016), to characterize glacial/interglacial sedimentation on the Northwest Iberian 54 

Margin (Plaza-Morlote et al., 2017), and to unmix the pedogenic and detrital magnetic components 55 

of Minnesotan soils (Maxbauer et al., 2017). The key advantage of FORC-PCA lies in the two-56 

dimensional nature of the FORC diagram. Unmixing one-dimensional coercivity distributions (e.g., 57 

by fitting to the sum of standard basis functions) can be ambiguous, especially when there is strong 58 

overlap between the coercivity distributions of different components (Heslop, 2015). The 59 

information provided by the vertical Bu axis of a FORC diagram, however, provides additional 60 

sensitivity to the presence of superparamagnetic (SP), single-domain (SD), vortex (V), and multi-61 

domain (MD) states, the ability to detect the presence or absence of interactions in each EM, and a 62 

way to discriminate between minerals with different types of magnetocrystalline anisotropy. Note 63 

that throughout this paper we follow Roberts et al. (2017) in referring to ‘vortex’ states rather than 64 

to ‘pseudo-single domain’ or ‘PSD’ states. The term ‘vortex’ is broadly defined by Roberts et al. 65 

(2017) to include both single-vortex (SV) and multi-vortex (MV) states, which more accurately 66 

describe the physics of magnetic particles (Donnelly et al., 2017) in the intermediate size range 67 

between the SD and MD states. 68 

 69 

Despite the numerous advantages of FORC-PCA, the method has some shortcomings that currently 70 

limit its usefulness for rock magnetic characterization. First, the FORC distribution is sensitive 71 

primarily to the irreversible component of the magnetic response of a sample to a changing 72 

magnetic field. Purely reversible responses to the changing field (e.g., from superparamagnetic, 73 

paramagnetic, antiferromagnetic or diamagnetic sources), are strictly absent from the FORC 74 

diagram, and cannot be identified as EM components in a FORC-PCA analysis. Even for 75 
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ferrimagnetic sources, the magnetization response of any sample can be split into the sum of 76 

reversible and irreversible components, with the ratio of the two depending largely on the domain 77 

state: SD states are dominated by irreversible magnetization, whereas MD states are dominated by 78 

reversible magnetization. In its current form, therefore, the unmixing proportions reported by 79 

FORC-PCA may deviate significantly from the actual proportions (by mass or volume) of the EMs 80 

present in the sample, especially if the EMs represent populations of grains with different domain 81 

states. Second, the process of choosing appropriate EMs (based often on a limited sampling of the 82 

unmixing space by a dataset) can be subject to non-uniqueness, user subjectivity, and in the most 83 

serious cases, to selection of physically unrealistic EMs. 84 

 85 

In this paper, we develop an improved algorithm for FORC-PCA that addresses these issues. We 86 

present a practical implementation that allows the FORC distribution and the FORCs themselves to 87 

be reconstructed simultaneously, and describe objective criteria that can be used to guide the most 88 

appropriate EM choice to enable quantitative unmixing of FORC diagrams. These improvements to 89 

the FORC-PCA method are implemented and integrated into a new version of the FORCem 90 

package within FORCinel (Harrison & Feinberg, 2008; Lascu et al., 2015), as described in the 91 

supplemental material. 92 

 93 

2. Materials and Methods 94 

Three synthetic binary mixtures that contain known proportions of SD, V, and MD 95 

magnetite were studied using FORC-PCA. Binary mixtures of SD-V and SD-MD particles were 96 

kindly provided by Bruce Moskowitz of the Institute for Rock Magnetism. These samples have 97 

been used in several previous studies of magnetic unmixing (Carter-Stiglitz et al., 2001; Dunlop & 98 

Carter-Stiglitz, 2006; Lascu et al., 2010). The SD EM is a freeze-dried sample of a cultivated strain 99 

of the MV1 magnetotactic bacterium. The magnetosomes have a well-constrained grain-size 100 

distribution, with particle sizes of 35x35x53 nm aligned in chains of 10-20 crystals (Moskowitz et 101 
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al., 1993). Both the V and MD EMs are synthetic magnetites produced by Wright Industries, with 102 

typical grain-size distributions of 1-3 µm and 8-40 µm, respectively (Carvallo & Muxworthy, 103 

2006). The SD-V and SD-MD mixtures were produced by first dispersing the coarser EM in CaF2 to 104 

0.1% by weight and then adding MV1 to obtain the desired mass proportions. The V-MD mixture 105 

was created by weighing the mass of EMs, and dispersing them to a 1% concentration in a fine-106 

grained sucrose matrix. Samples were mixed gently, placed into gelatin capsules and packed with 107 

quartz wool or Kimwipe tissues to prevent vibration of the sample during measurement. The mixing 108 

proportions of all samples are listed in Table 1. Bulk hysteresis parameters (newly measured for this 109 

study) for all samples are listed in Table 2. 110 

 111 

Measurements were made at the University of Cambridge on a Lakeshore PMC MicroMag 112 

vibrating sample magnetometer. For each sample 174 FORCs were acquired in 1.5 mT field 113 

increments with 200 ms averaging time. The FORC data were imported into FORCinel (Harrison & 114 

Feinberg, 2008) and processed using the VARIFORC smoothing algorithm (Egli, 2013), resampled 115 

on a 2 mT grid, and subjected to PCA analysis following the protocol described by Lascu et al. 116 

(2015). EMs were selected from known pure samples to constrain the mixing space. In each case 117 

the finest magnetic component was chosen as EM1. The synthetic binary mixtures were then 118 

unmixed using PCA and the mixing proportions were calculated. 119 

 120 

3. Results 121 

 Representative FORC diagrams for each set of studied binary mixtures are shown in Figs. 1-122 

3. The MD EM (Figs. 1a, 3c) has a typical MD FORC diagram dominated by a low-coercivity, 123 

vertically spread signal and a weak, high-coercivity, horizontally spread tail, likely related to strong 124 

pinning of domain walls by stress fields on surfaces and at internal defects/dislocations (Pike et al., 125 

2001a; Lindquist et al., 2015). The SD EM (Figs. 1c, 2c) has a typical SD FORC diagram for non-126 

interacting uniaxial SD particles, comprising an intense horizontal ridge and a corresponding weak 127 
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negative signal located close to the negative Bu axis (Muxworthy et al., 2004; Newell, 2005; Egli et 128 

al., 2010). The coercivity distribution for the cultured MV1 bacteria is particularly narrow. Some 129 

vertical spreading of the horizontal ridge is evident, which indicates either the presence of magnetic 130 

interactions among the magnetosome chains, or a small degree of chain collapse (Li et al., 2012; 131 

Egli & Winklhofer, 2014; Harrison & Lascu, 2014). A slight vertical offset of the horizontal ridge is 132 

likely a viscous magnetization effect caused by the time asymmetry of the FORC measurement 133 

protocol (Egli, 2013). The V EM (Figs. 2a, 3a) consists of an intense, closed-contour peak with 134 

broad vertical and horizontal spreading, and three weaker, less prominent lobes. Although such 135 

FORC signatures can be created by strongly interacting SD clusters (e.g., Carvallo et al., 2005), this 136 

explanation can be ruled out here because the known grain size of the sample (1-3 µm) far exceeds 137 

the upper SD threshold size. Instead, the broad central peak and three lobes are interpreted as MV 138 

and SV processes, respectively, dominated by intra-particle, rather than inter-particle, interactions. 139 

A weak negative signal close to the negative Bu axis is visible in Fig. 3a. For V-MD mixtures, the 140 

maximum intensity of the FORC signal in each EM is comparable, so that both signals are clearly 141 

evident in a ~50:50 mixture (Fig. 3b). The intense positive signal associated with the SD EM, 142 

however, dominates the FORC signal of the SD-MD and SD-V mixtures (Fig. 1b, 2b), so that only 143 

when >80% of the mixture is constituted by the MD or V EMs does their presence become obvious 144 

in the FORC diagram. 145 

 146 

Results of FORC-PCA analysis using the method of Lascu et al. (2015) are shown in Fig. 4. There 147 

is a systematic non-linear deviation in all three mixtures between the FORC-PCA calculated (EM1) 148 

and actual weight fractions (EM1*) of EMs used to prepare the samples. With EM1 defined to be 149 

the finer-grained EM, all three binary mixtures have a concave down relationship between the 150 

calculated versus actual mixing proportions. The non-linearity is most pronounced for the SD-MD 151 

binary mixture, and is least pronounced for the SD-V binary mixture. 152 

 153 
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4. Origin of the unmixing discrepancy 154 

The difference between mixing proportions derived by FORC-PCA and the known mass 155 

proportions of EMs in the synthetic mixtures (Fig. 4) can be explained by the fact that the SD, V, 156 

and MD states have different ratios of irreversible to reversible magnetization. The FORC 157 

distribution, 𝜌, is defined as: 158 

 159 

𝜌 = −
1

2

∂2𝑀

∂𝐵𝑎 ∂𝐵𝑏
,          (1) 160 

 161 

where M is the magnetization, Ba is the reversal field and Bb is the measurement field. Prior to 162 

FORC-PCA analysis, each FORC diagram is normalized by its integral: 163 

 164 

∫ ∫ 𝜌𝑑𝐵𝑎𝑑𝐵𝑏 = 𝑀𝑠 −𝑀𝑟𝑒𝑣 = 𝑀𝑖𝑟𝑟,        (2) 165 

 166 

where Ms is the saturation magnetization, Mrev is the reversible component, and Mirr is the 167 

irreversible component (Pike, 2003). FORC-PCA describes each normalized FORC diagram as the 168 

linear sum of normalized EMs, so that the mixing proportions are defined as (e.g., for a binary 169 

mixture): 170 

 171 

EM1 =
𝑚1𝑀𝑠1𝑓1

𝑀𝑖𝑟𝑟
, and          (3) 172 

 173 

EM2 = 1 − EM1 =
𝑚2𝑀𝑠2𝑓2

𝑀𝑖𝑟𝑟
,         (4) 174 

 175 

where m1 and m2 are the mass of each EM, Ms1 and Ms2 are the mass-normalized saturation 176 

magnetization of each EM, and f1 and f2 are the ratio of the irreversible magnetization to saturation 177 

magnetization for each EM. The mass proportions of the EMs in the mixture are given by: 178 

 179 
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EM1∗ =
𝑚1

𝑚1+𝑚2
.          (5) 180 

 181 

Rearranging equations 3 and 4 and substituting in 5, we obtain: 182 

 183 

EM1∗ =
EM1

EM1+𝑓(1−EM1)
 ,         (6) 184 

 185 

where 186 

 187 

𝑓 =
𝑀𝑠1𝑓1

𝑀𝑠2𝑓2
.           (7) 188 

 189 

The f factor expresses how different the EMs are in terms of their irreversible/reversible 190 

magnetization contributions. A value of f = 1 corresponds to ideal behavior (EM* = EM1), and is 191 

obtained only when the EMs contain identical minerals (Ms1 = Ms2) with equal ratios of irreversible 192 

to saturation magnetization (f1 = f2). Least-squares fits to plots of EM1 vs EM1* are shown as solid 193 

lines in Fig. 4, yielding f values of 2.72, 1.52, and 2.69 for the SD-MD, SD-V, and V-MD mixtures, 194 

respectively. All EMs contain magnetite; therefore, the different f factors indicate that the 195 

irreversible contribution to the magnetization of each domain state is different, with SD > V > MD. 196 

Although, in principle, equation 6 allows the FORC-PCA proportions to be corrected, prior 197 

knowledge of the f factor is required. This is not a practical solution when the properties of the EMs 198 

are unknown.   199 

 200 

5. An improved FORC-PCA algorithm 201 

The non-linear unmixing discrepancy documented above can be corrected by applying PCA 202 

to the FORC magnetization surface (which contains both reversible and irreversible contributions), 203 

rather than to the FORC distribution (which contains only irreversible contributions); the FORC 204 

magnetization surface has been shown previously to mix linearly (Muxworthy et al., 2005). This 205 
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approach, however, poses a challenge to interactive exploration of the unmixing space that is 206 

necessary to identify suitable EMs: as each point in the mixing space is explored, it becomes 207 

necessary to estimate  over the reconstructed magnetization surface to obtain the corresponding 208 

FORC diagram. Here we overcome this problem by applying PCA to the set of six polynomial 209 

coefficients that are used to fit the magnetization surface during smoothing of the input FORC 210 

diagrams (Pike et al., 1999). In this way, the reconstructed set of coefficients at any given point in 211 

the unmixing space can be used to calculate both the magnetization surface and its derivatives 212 

simultaneously. 213 

 214 

Our procedure is described as follows. Raw FORC data for a set of samples to be analyzed are 215 

imported into FORCinel. A linear high-field slope correction is applied, and a record is kept of the 216 

mass normalized Ms value for each sample, for future reference. Here, the slope correction was 217 

performed by fitting a straight line to the high-field portion of the FORCs. In cases where the 218 

FORCs have not been measured to sufficiently high fields to fully saturate the ferrimagnetic 219 

component, it may be desirable to perform the correction using a separately determined value of the 220 

high-field susceptibility. The FORCs are normalized to Ms = 1, the lower branch subtracted 221 

(optionally), and processed using the VARIFORC variable smoothing algorithm (Egli, 2013). For 222 

consistency with the published code (see supplementary materials) we use the VARIFORC 223 

coordinate scheme (Bc, Bu) rather than the measurement coordinate scheme (Ba, Bb) in the 224 

following. For each output point in a processed FORC diagram, a weighted second-order 225 

polynomial fit is performed to the local magnetization surface over a rectangular area defined by the 226 

horizontal and vertical smoothing factors (Egli, 2013): 227 

 228 

𝑀(𝐵𝑐 , 𝐵𝑢) = 𝑎0 + 𝑎1𝐵𝑐 + 𝑎2𝐵𝑢 + 𝑎3𝐵𝑐
2 + 𝑎4𝐵𝑐𝐵𝑢 + 𝑎5𝐵𝑢

2 .    (8) 229 

 230 

The FORC distribution (eqn. 1) is then given by: 231 
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 232 

𝜌 =
𝑎3−𝑎5

4
.           (9) 233 

 234 

In order to analyze sets of FORC diagrams that may have been acquired using different 235 

measurement protocols, each polynomial coefficient in eqn. 8 is interpolated bi-linearly onto a 236 

rectangular grid, capturing a specified region of interest. For a rectangular grid containing N points, 237 

there will be 6N observations for each FORC diagram, corresponding to the six bi-linearly 238 

interpolated polynomial coefficients for each point. The FORC-PCA method of Lascu et al. (2015) 239 

is then applied, simply replacing the N values of the FORC distribution with the 6N polynomial 240 

coefficients for each sample. Once the number of significant PCs has been chosen (n ≤ 3, 241 

corresponding to a maximum of 4 EMs), low-rank approximations of both the magnetization 242 

surface and the FORC distribution can be reconstructed for any chosen location within the resulting 243 

unmixing space (score plot). Exploring the unmixing space to identify potential EMs can now be 244 

performed interactively, guided by both the reconstructed magnetization and corresponding FORC 245 

diagram. 246 

 247 

A complication occurs when the option to subtract the lower branch from the normalized FORCs 248 

prior to smoothing is chosen. Lower-branch subtraction was introduced by Egli (2013) to improve 249 

smoothing performance in the vicinity of the Bb = 0 axis (an axis extending from the origin at a -45° 250 

angle in VARIFORC coordinate space). Lower-branch subtraction reduces significantly the 251 

appearance of smoothing artefacts along this axis when using variable smoothing protocols because 252 

it removes sigmoidal magnetization contributions that are poorly described by a second-order 253 

polynomial. When smoothing is performed after lower-branch subtraction, the set of polynomial 254 

coefficients in eqn. 8 describes the subtracted magnetization surface rather than the desired full 255 

magnetization surface. In order to reconstruct the full magnetization surface, a second smoothing 256 

step is performed on a synthetic 2D magnetization surface created using just the lower-branch 257 
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signal. This lower-branch surface is fitted using eqn. 8, but with the strict constraint that a3 = a5, 258 

thereby ensuring that the FORC distribution (and its associated artefacts) associated with the lower-259 

branch surface is zero (eqn. 9). Polynomial coefficients resulting from the fit to the lower-branch 260 

surface are then added to those resulting from the fit to the lower-branch subtracted magnetization 261 

surface, which are then used as input to the FORC-PCA. This double-smoothing procedure allows 262 

the full magnetization surface to be reconstructed from the chosen PC combination, while retaining 263 

an artefact-free representation of the reconstructed FORC diagram. 264 

 265 

Heslop & Roberts (2012a) demonstrated that, because of the corrupting effects of measurement 266 

noise, it is necessary to calculate statistical significance levels to identify the parts of a FORC 267 

distribution where  is significantly above the signal-to-noise ratio. Use of PCA to provide a low-268 

rank approximation of a collection of measured FORC diagrams is also an effective approach to 269 

reduce the influence of noise in representing a mixing system (Heslop, 2015). Therefore, while 270 

PCA will not eliminate noise completely, its effect on the representation of the mixing system and 271 

on the identified EMs is reduced substantially compared to individual FORC diagrams. 272 

 273 

Results of the new algorithm applied to the synthetic binary mixtures are shown in Figs. 5-7. The 274 

V-MD mixture (Fig. 5) is well described as a binary mixture, with 99% of the variance in the 275 

dataset explained by PC1. Pure EMs are included within the dataset, which leads to no ambiguity in 276 

the choice of EM1 (V) and EM2 (MD) (Fig. 5a, b). The SD-MD mixture (Fig. 6) can be 277 

approximated as a binary mixture, with 95% of the variance being explained by the first principal 278 

component (PC1). However, a small but significant second principal component (PC2) is needed to 279 

bring the variance explained to >99% (Fig. 6g). Without including PC2, it is not possible to isolate 280 

completely a pure MD EM. This effect is caused by subtle coercivity differences of the MV1 281 

bacteria from sample to sample, which only become apparent because of the intense and narrow 282 

nature of their FORC distribution. Possible explanations for the coercivity difference between 283 
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samples include differences in oxidation state that resulted from sample storage in air for over 10 284 

years, or different degrees of bacterial chain collapse. By including PC2, small coercivity 285 

differences can be taken into account, enabling a pure MD EM to be identified (EM1, Fig. 6a), 286 

along with two SD EMs (EM2 and EM3) that differ only in their average coercivity (Figs. 6b and c; 287 

Table 3). Hence, PC1 describes the binary mixing between SD and MD EMs, and PC2 accounts for 288 

the varying coercivity of the SD MV1 component. A similar approach was taken to describe the 289 

SD-V mixture (Fig. 7), although the coercivity variation of the MV1 samples is less pronounced 290 

(99% of the variance is explained by PC1 alone). In all three cases, the mixing proportions derived 291 

from FORC-PCA agree well with the known mass fractions. The 2𝜎 differences between calculated 292 

and observed proportions are 2%, 5%, and 6% for the SD-MV, SD-V, and MD-V binary mixtures, 293 

respectively. These observations provide an empirical estimate of the error in the unmixing 294 

proportions that is likely to be achieved using FORC-PCA in optimal cases (i.e., where the mixing 295 

space is well sampled by the dataset). 296 

 297 

6. Feasibility metrics 298 

An inherent part of the FORC-PCA method is the supervised exploration of the unmixing 299 

space in order to identify appropriate EMs (Lascu et al., 2015). This process is only unambiguous 300 

when the sample set includes examples of each EM that is being solved for (as is approximately the 301 

case for the binary mixtures studied here). When the sampling of the unmixing space in incomplete, 302 

however, the method relies heavily on the expertise of the user to identify (a) EMs that enclose the 303 

entire set of sample scores (with the exception of outliers identified by residual analysis), (b) pure 304 

EMs (i.e., that do not contain any residual contributions from the other EMs), and (c) EMs that are 305 

physically realistic (i.e., the reconstructed FORC diagram for each EM corresponds to an achievable 306 

FORC geometry based on knowledge of the magnetic mineralogy and the responses that can be 307 

modelled physically) (Harrison & Lascu, 2014). With access to only the reconstructed FORC 308 

diagram, identification of physically unrealistic regions of the unmixing space relies on subjective 309 
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criteria. The availability of reconstructed FORCs, however, provides objective information from 310 

which criteria can be defined to assess the physical feasibility of the corresponding FORC diagram. 311 

Following the approach of Heslop & Roberts (2012b), three criteria that can be applied to assess the 312 

feasibility of reconstructed FORCs are: (a) saturation (i.e., no FORC should exceed the normalized 313 

value of Ms = 1), (b) monotonicity (i.e., the first derivative of a FORC with respect to the 314 

measurement field should remain nonnegative), and (c) crossing (i.e., the first derivative of the 315 

magnetization surface with respect to the reversal field should remain positive, meaning that 316 

FORCs do not intersect each other). Each of these metrics can be used on their own, or in 317 

combination, to define the region of unmixing space that is physically realistic. The EMs should be 318 

contained entirely within that region. 319 

 320 

We define three metrics for each of the feasibility criteria, which vary from 0 (completely 321 

unsatisfied) to 1 (completely satisfied): 322 

 323 

𝑚𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 =
∑|𝑀𝐴|

∑|𝑀|
,          (10) 324 

 325 

where MA is the subset of the magnetization, M, that satisfies the condition |𝑀| ≤ 1; 326 

 327 

𝑚𝑚𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐𝑖𝑡𝑦 =
∑(

𝑑𝑀

𝑑𝐵𝑎
)
𝐴

∑|
𝑑𝑀

𝑑𝐵𝑎
|

,         (11) 328 

 329 

where (
𝑑𝑀

𝑑𝐵𝑎
)
𝐴
 is the subset of 

𝑑𝑀

𝑑𝐵𝑎
 that satisfies the condition 

𝑑𝑀

𝑑𝐵𝑎
≥ 0; and 330 

 331 

𝑚𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔 =
∑(

𝑑𝑀

𝑑𝐵𝑏
)
𝐴

∑|
𝑑𝑀

𝑑𝐵𝑏
|

,         (12) 332 

 333 



Confidential manuscript submitted to Geochemistry, Geophysics, Geosystems 

 14 

where (
𝑑𝑀

𝑑𝐵𝑏
)
𝐴
 is the subset of 

𝑑𝑀

𝑑𝐵𝑏
 that satisfies the condition 

𝑑𝑀

𝑑𝐵𝑏
≥ 0. 334 

 335 

The metrics can be combined into a single feasibility metric, m, by multiplying them together in any 336 

combination. By calculating m over a grid of points, contours of feasibility can be used to indicate 337 

the region of unmixing space where the criteria are satisfied fully (m = 1). In practice, some 338 

allowance is needed for the fact that we are dealing with a low-rank approximation to the data, that 339 

some non-monotonicity may be genuinely present (e.g., for SP grains), and that experimental noise 340 

can cause FORCs to cross as saturation is approached. This means that m values slightly less than 1 341 

should be allowable. Here we take m > 0.99 as a reasonable (although arbitrary) guideline of 342 

acceptability (Fig. 6g and 7g). Given the essentially binary nature of the mixtures, the placement of 343 

EM3 slightly outside the m = 0.99 contour in Figs. 6g and 7g has been done to maintain EM2 and 344 

EM3 at a constant value of PC1 away from EM1, whilst ensuring that all data points are contained 345 

within the mixing triangle. 346 

 347 

A fourth metric, which should be used independently of the other three, describes the amount of 348 

negative signal in the processed FORC diagram. Given that negative regions are an intrinsic feature 349 

of many FORC diagrams, this metric is less stringent than the others (values significantly < 1 are 350 

acceptable). However, there are specific domain states that do not have intrinsically negative 351 

regions, or have only weakly negative regions, so evaluating this metric can be helpful to define the 352 

location of specific EMs. For example, inappropriate appearance of strong negative signals can be 353 

caused by over-subtraction of other EMs, which provides a good indication that EM selection has 354 

strayed too far from the data. The positivity metric is defined as: 355 

 356 

𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
∑|𝜌𝐴|

∑|𝜌|
,          (13) 357 

 358 
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where 𝜌𝐴 is the subset of the FORC distribution, 𝜌, that satisfies the conditions 𝜌 ≥ 0. Steep drops 359 

in mpositivity may indicate that over-subtraction of other EMs is occurring.  360 

 361 

7. Example 362 

To illustrate the new FORC-PCA algorithm applied to natural mixtures of different domain 363 

states, we analyzed a suite of greigite-bearing clays from Florindo et al. (2007), which were 364 

deposited between 800 ka and 600 ka in the Tiber River coastal alluvial plain around Rome. A total 365 

of 17 FORCs were measured, 14 of which contain magnetostatically interacting SD greigite mixed 366 

with varying amounts of a SP/SD greigite. The other 3 samples contain the SP/SD signal only. The 367 

latter samples were significantly less magnetic than the former, and have noisy processed FORC 368 

diagrams. FORC data from these three samples were averaged to produce a single representative 369 

example of the pure SP/SD component. This averaged FORC and the other 14 FORCs were then 370 

analyzed using FORC-PCA (Fig. 8). Only two PCs are needed to explain over 90% of the variance 371 

in the dataset, with a third PC bringing the variance explained to 98%. For illustrative purposes, we 372 

use a two-PC model constructed from PC1 and PC3, which provides the most convenient projection 373 

of the key mixing trends. Three EMs are identified. Key features of EM1 (Fig. 8a) are a negative 374 

region close to the negative Bu axis (1), a second negative region that is elongated and steeply 375 

angled down and to the right (2), and a kidney-shaped positive peak that is strongly offset in the 376 

negative Bu direction and extends only slightly above the Bu = 0 axis (3). All three of these features 377 

are diagnostic of relatively weakly interacting SD greigite grains (Roberts et al., 2011) with cubic 378 

magnetocrystalline anisotropy (Harrison & Lascu, 2014). Key features of EM2 (Fig. 8b) are a 379 

negative region close to the negative Bu axis (1) and a rounded positive peak that is offset in the 380 

negative Bu direction and extends far above the Bu = 0 axis (2). Both features are diagnostic of 381 

strongly interacting SD greigite (Roberts et al., 2011; Harrison & Lascu, 2014). Key features of 382 

EM3 (Fig. 8c) are a low-coercivity ridge with maximum intensity at 0 mT (1) and an increasing 383 

positive signal extending along the negative Bu axis (2). Feature 1 is characteristic of non-384 
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interacting SD greigite particles with coercivities that have been reduced by thermal activation 385 

(Pike et al., 2001b; Rowan & Roberts, 2006). Feature 2 is likely due to viscous SP behavior, which 386 

leads to the negative initial slope of each FORC (arrow in Fig. 8f; Pike et al., 2001b). However, 387 

given that the intensity of this feature continues to increase, even as reverse saturation is 388 

approached, it is also likely to be partially an instrumental artefact. 389 

 390 

The choice of EMs in this case has been guided by the following principles. First, EM3 is fixed by 391 

inclusion of the pure SP/SD EM in the dataset. This sample plots to the far right of the unmixing 392 

space (Fig. 8g), close to but within the guideline boundary of physical feasibility. Moving left, away 393 

from EM3 in a direction parallel to the PC1 axis (which describes the largest mode of variability in 394 

the dataset), yields a binary mixture of EM3 and a moderately-interacting SD greigite EM (EM1). 395 

The most extreme left-hand data point lies close to the guideline boundary of physical feasibility. 396 

However, the FORC diagram for this data point contains a trace residual of EM3. In order to obtain 397 

a pure EM, one must move further to the left. The guideline boundary of physical feasibility places 398 

a limit on how far to the left one can go before the reconstructed FORCs for EM1 become 399 

physically unrealistic. We place EM1 at the m = 0.99 threshold, which yields a physically realistic 400 

pure EM with no residual trace of EM3. The placement of EM2 is more difficult because it lies well 401 

within the guideline region of physical feasibility. Here, the positivity index (eqn. 13) provides an 402 

additional guideline (inset to Fig. 8g). A steep drop in mpositivity is observed if EM2 is placed too far 403 

along the positive PC2 axis, which is caused by over-subtraction of EM1 from the reconstructed 404 

FORC diagram. If EM2 is placed too far along the positive PC1 axis then not all the data are 405 

enclosed by the unmixing space. Combined, these two principles place important constraints on the 406 

location of EM2, and produce a reconstructed FORC diagram with a recognizable geometry and 407 

minimal residual traces of EM1 and EM3. 408 

 409 
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Having defined the unmixing space, the proportions of the three EMs can be determined (Fig. 8h). 410 

Two distinct mixing trends can be identified in the data: a mixing between SP/SD and strongly 411 

interacting SD greigite, and one between weakly and strongly interacting SD greigite. The first 412 

mixing trend can be explained by grain growth of authigenic greigite from small, non-interacting 413 

particles below the SP threshold size to larger, stable SD particles in closely packed clusters within 414 

framboids with strong interactions (Rowan & Roberts, 2006). The second mixing trend can be 415 

explained as a weakening of the interactions between SD greigite particles, driven by a lowering of 416 

the packing fraction. A possible mechanism to explain this trend is the progressive replacement of 417 

strongly interacting greigite framboids by thermodynamically stable, paramagnetic pyrite. This 418 

process was recently identified by Ebert et al. (2018) using high-resolution magnetic force 419 

microscopy imaging. This interpretation is consistent with the lack of a mixing trend between EM1 420 

(SP/SD) and EM3 (weakly interacting SD), which cannot be achieved in this pyrite replacement 421 

scenario without first going through the strongly interacting SD greigite EM. 422 

 423 

8. Discussion 424 

Unmixing the magnetic properties of rocks, sediments, and soils is a primary task in rock 425 

magnetism. Numerous methods exist to tackle this problem (e.g., Robertson & France, 1994; 426 

Kruiver et al., 2001; Dunlop, 2002a, 2002b; Egli, 2004a, 2004b, 2004c; Franke et al. 2007; Heslop 427 

& Dillon, 2007;  Lascu et al., 2010, 2015; Ludwig et al., 2013; Lagroix & Guyodo, 2017) as well as 428 

an extensive toolbox of magnetic proxies that are designed to highlight specific magnetic 429 

mineralogy variations in environmental contexts (Evans & Heller, 2003; Liu et al., 2012). No single 430 

method is perfect for all cases, and usually a combination of methods is needed to unmix all 431 

magnetic components contained within a material. In particular, preparatory studies performed at 432 

high sampling resolution provide an efficient way to prescreen a dataset, and to identify samples 433 

that are closest to potential EMs (e.g., EM3 in Fig. 8). The FORC-PCA method is ideally suited to 434 

characterizing ferrimagnetic minerals, with an emphasis on discriminating populations of grains that 435 
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differ in domain state, coercivity distribution, anisotropy, and interaction field (i.e., aspects to which 436 

FORC diagrams are particularly sensitive). Here we have resolved many of the outstanding issues 437 

associated with the original FORC-PCA method of Lascu et al. (2015), including solution of the 438 

linear mixing equation, the ability to identify SP EMs that are dominated by reversible 439 

magnetizations, and reducing ambiguities in defining the unmixing space. Excellent agreement 440 

between our calculated proportions for SD-MV and SD-V mixtures contrasts starkly with attempts 441 

to unmix these samples using either linear or non-linear mixing in a Day plot (Day et al., 1977; 442 

Dunlop & Carter-Stiglitz, 2006). Failure of the Day plot unmixing approach was explained by 443 

Dunlop & Carter-Stiglitz (2006) as due to the squareness of hysteresis loops for MV1 bacteria, 444 

which violates the linear assumption of the unmixing model (Dunlop, 2002a, 2002b). This 445 

illustrates one of the key advantages of PCA, which makes no prior assumptions about the shape of 446 

the EM signals (Heslop, 2015). 447 

 448 

The need to use three EMs to describe binary SD-V and SD-MD mixtures highlights an important 449 

underlying assumption of the FORC-PCA method, namely that the properties of each EM are 450 

constant throughout a sample set, with only the mixing proportions varying from sample to sample. 451 

Whenever this assumption is not met, additional ‘fictive’ EMs may be needed to define adequately 452 

the total variability within a dataset. This is clearly the case for the MV1-bearing mixtures, where 453 

significant coercivity variations of the bacterial component exist from sample to sample. Given the 454 

narrow coercivity distribution of the MV1 bacteria, use of a third EM becomes necessary to isolate 455 

a pure V or MD EM. Most natural samples have broader coercivity distributions, however, and as 456 

long as intra-EM variability is low compared to inter-EM variability, ‘fictive’ EMs are not typically 457 

necessary. The likelihood that ‘fictive’ EMs will be needed to account for intra-EM variability 458 

increases as the size of the FORC dataset increases. For large datasets, it may be necessary to 459 

perform a series of FORC-PCA analyses on subsets of the data. This approach allows 460 

commonalities between EMs extracted from different subsets to be identified, and the nature of 461 
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intra-EM variability to be explored. In other cases (e.g., grain-size sorting of a detrital component), 462 

sample-to-sample variability is physically linked to a single EM with continuously variable 463 

properties, rather than to a mechanical mixture of EMs with fixed properties. In these cases, FORC-464 

PCA generates two or more ‘fictive’ EMs that recreate inter-sample variations, but do not 465 

correspond to fixed physical components of the system. Nevertheless, the mixing proportions of 466 

‘fictive’ EMs provide a useful co-ordinate system with which to quantify the extent of inter-sample 467 

variation, and may be used to identify variation trends and clusters of behavior. 468 

 469 

The ability to unmix up to four
1
 EMs, each with their own distinct domain state, coercivity and 470 

interaction field distribution, takes us beyond the routine characterization that is commonly 471 

considered ‘good enough’ for most paleomagnetic studies, and largely addresses the ambiguities 472 

(Roberts et al., 2018) involved in interpreting the widely used Day diagram (Day et al., 1977). The 473 

new algorithm provides a full set of FORCs for each EM, which allows additional hysteresis 474 

properties to be derived for each EM. In some cases, this additional information can be used to 475 

check for consistency with the interpreted physical origin of each EM (e.g., if the FORC diagram of 476 

the EM suggests non-interacting, uniaxial SD behavior, then Mr/Ms values close to 0.5 and Bcr/Bc 477 

values close to 1 would be expected). Compared to a Day diagram, hysteresis ratios of extracted 478 

EMs acquire enhanced physical meaning because the effects of mixing have been deconvolved. The 479 

use of feasibility metrics reduces (but does not eliminate) the ambiguity involved in defining EMs 480 

when the unmixing space is sampled incompletely. This development should help to make the 481 

FORC-PCA method accessible to a wider audience. However, it should always be borne in mind 482 

that feasibility metrics are only a guideline – good choices, as ever, rely on the expertise and 483 

judgement of the user. 484 

 485 

9. Conclusions 486 

                                                 
1
 There is no limit on the number of EMs that can be mathematically defined. However, beyond 

four EMs, visualization and interactive exploration of the unmixing space becomes impractical. 



Confidential manuscript submitted to Geochemistry, Geophysics, Geosystems 

 20 

1. Our improved FORC-PCA algorithm addresses many of the outstanding issues with the initial 487 

method of Lascu et al. (2015), including solving the linear mixing problem and providing the 488 

ability to characterize SP EMs that are dominated by reversible magnetizations. 489 

2. The new method enables both the reconstructed FORC magnetization surface and the 490 

corresponding FORC diagram of each EM to be identified. 491 

3. Access to the reconstructed FORC magnetization surface enables objective criteria to be defined 492 

that guide the choice of physically realistic EMs. A mixture of robust criteria (e.g., saturation, 493 

monotonicity, and crossing) and more flexible criteria (e.g., positivity) can be used to help 494 

reduce the subjectivity of defining the unmixing space. 495 

4. The method has been applied successfully to quantify synthetic binary mixtures with EMs with 496 

contrasting domain states, and to aid interpretation of diagenetic trends in greigite-bearing 497 

sedimentary environments. 498 

5. The improved FORC-PCA algorithm provides a powerful method to discriminate between 499 

populations of grains with different domain state, coercivity distribution, anisotropy type, and 500 

interaction field distribution. The increased value of the information that this analysis yields far 501 

outweighs the additional measurement time that is needed, providing a way to take routine rock 502 

magnetic characterization far beyond the ambiguities of the widely used Day diagram. 503 

 504 
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Figure Captions 681 

 682 

Figure 1. Experimental FORC diagrams for SD-MD mixtures. Smoothing performed using FORCinel with 683 

VARIFORC parameters Sc0 = 7, Sc1 = 7, Sb0 = 5, Sb1 = 7, 𝜆𝑐= 0.1, and 𝜆𝑏= 0.1. Mixing proportions are (a) 684 

100%, MD 0% SD, (b) 88%, MD 12% SD, and (c) 8% MD, 92% SD. 685 

 686 

Figure 2. Experimental FORC diagrams for SD-V mixtures. Smoothing performed using FORCinel with 687 

VARIFORC parameters Sc0 = 7, Sc1 = 12, Sb0 = 5, Sb1 = 12, 𝜆𝑐= 0, and 𝜆𝑏= 0. Mixing proportions are (a) 688 

100% V, 0% SD, (b) 80% V, 20% SD, and (c) 5% V, 95% SD. 689 

 690 

Figure 3. Experimental FORC diagrams for V-MD mixtures. Smoothing performed using FORCinel with 691 

VARIFORC parameters Sc0 = 7, Sc1 = 7, Sb0 = 5, Sb1 = 7, 𝜆𝑐=0.1, and 𝜆𝑏=0.1. Mixing proportions are (a) 692 

100% V, 0% MD, (b) 49% V, 51% MD, and (c) 0% V, 100% MD. 693 

 694 

Figure 4. Comparison of mixing proportions derived from FORC-PCA (EM) using the method of Lascu et 695 

al. (2015) with known mass proportions of end members in synthetic mixtures (EM*) of (a) SD-MD, (b) SD-696 
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V, and (c) V-MD magnetite particles, respectively. Solid lines are fits to the data using eqn. 6, which yield f 697 

= 2.72, 1.52, and 2.69, respectively. 698 

 699 

Figure 5. FORC-PCA analysis of V-MD mixtures using the new unmixing algorithm. (a-b) Reconstructed 700 

FORC diagrams for EM1 (V) and EM2 (MD). (c-d) Reconstructed FORCs for EM1 and EM2. (e) PC score 701 

plot for a binary unmixing space between EM1 and EM2 (indicated by arrows). Diamonds illustrate the 702 

scores of individual samples. (f) Comparison of mixing proportions extracted using the new algorithm with 703 

the known mass proportions of end members in the synthetic mixture. The solid line indicates a one-to-one 704 

relationship. 705 

 706 

Figure 6. FORC-PCA analysis of MD-SD mixtures using the new algorithm. (a-c) Reconstructed FORC 707 

diagrams for EM1 (MD), EM2 (SD high coercivity), and SD (low coercivity), respectively. (d-f) 708 

Reconstructed FORCs for EM1, EM2, and EM3, respectively. (g) PC score plot for a ternary unmixing space 709 

between EM1, EM2, and EM3 (black triangle). Diamonds illustrate the scores of individual samples. 710 

Contour lines represent the combined feasibility metric, m, for the saturation, monotonicity, and crossing 711 

metrics. (h) Comparison of mixing proportions extracted using the new algorithm with the known mass 712 

proportions of end members in the synthetic mixture. The solid line represents a one-to-one relationship. 713 

 714 

Figure 7. FORC-PCA analysis of V-SD mixtures using the new algorithm. (a-c) Reconstructed FORC 715 

diagrams for EM1 (V), EM2 (SD high coercivity) and SD (low coercivity), respectively. (d-f) Reconstructed 716 

FORCs for EM1, EM2, and EM3, respectively. (g) PC score plot for a ternary unmixing space between 717 

EM1, EM2, and EM3 (black triangle). Diamonds illustrate the scores of individual samples. Contour lines 718 

represent the combined feasibility metric for the saturation, monotonicity, and crossing metrics. (h) 719 

Comparison of mixing proportions extracted using the new algorithm with the known mass proportions of 720 

end members in the synthetic mixture. The solid line represents a one-to-one relationship. 721 

 722 

Figure 8. FORC-PCA analysis of greigite-bearing clay samples from the Tiber River, Rome (Florindo et al. 723 

(2007). (a-c) Reconstructed FORC diagrams for EM1 (moderately interacting SD greigite), EM2 (strongly 724 

interacting SD greigite) and EM3 (SP/SD greigite), respectively. (d-f) Reconstructed FORCs for EM1, EM2, 725 
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and EM3. The arrow in (f) indicates the downward-inflected response at the start of each FORC. Although 726 

this phenomenon is associated partially here with viscous SP behavior (Pike et al., 2001b), it is also likely to 727 

be partially an instrumental artefact in this case. (g) PC score plot for a ternary unmixing space between 728 

EM1, EM2, and EM3 (black triangle). Diamonds illustrate the scores of individual samples. Contour lines 729 

represent the combined feasibility metric for the saturation, monotonicity, and crossing metrics. The inset is 730 

an illustration of contours for the positivity metric. (h) Ternary diagram for the extracted proportions of 731 

EM1, EM2, and EM3. The blue line illustrates the two dominant mixing trends (EM3-EM2 and EM2-EM1). 732 

An example experimental FORC diagram for a mixture of strongly interacting and ~35% viscous SP/SD 733 

greigite is indicated by the arrow. 734 
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Table 1. Mass fractions of endmembers in measured samples  

 Sample SD  V MD 
       

   V-MD   
      

 wm_1   1.00 0.00  
       

 wm_2   0.85 0.15  
       

 wm_3   0.65 0.35  
       

 wm_4   0.64 0.36  
       

 wm_5   0.49 0.51  
       

 wm_6   0.69 0.31  
       

 wm_7   0.31 0.69  
       

 wm_8   0.34 0.66  
       

 wm_9   0.10 0.90  
       

 wm_10   0.00 1.00  
       

 wm_11   0.25 0.75  
       

 wm_12   0.42 0.58  

   SD-V   
      

 w30_1 0.00  1.00   
       

 w30_2 0.50  0.50   
       

 w30_3 0.31  0.69   
       

 w30_4 0.20  0.80   
       

 w30_5 0.10  0.90   
       

 w30_6 0.06  0.94   
       

 w30_7 0.69  0.31   
       

 w30_8 0.80  0.20   
       

 w30_9 0.90  0.10   
       

 w30_10 0.95  0.05   

   SD-MD   
       

 w14_1 0.00   1.00  
       

 w14_2 0.56   0.44  
       

 w14_3 0.33   0.67  
       

 w14_4 0.24   0.76  
       

 w14_5 0.12   0.88  
       

 w14_6 0.83   0.17  
       

 w14_7 0.92   0.08  
        



 

 

Table 2. Summary of hysteresis properties for measured samples  

 Sample Hc (mT) Hcr (mT) Hcr /Hc Mr /Ms 

   V-MD    
       

 wm_1 31.35 52.56 1.68 0.29  
       

 wm_2 28.61 52.23 1.83 0.26  
       

 wm_3 23.11 79.32 3.43 0.20  
       

 wm_4 21.05 49.43 2.35 0.19  
       

 wm_5 18.25 48.59 2.66 0.16  
       

 wm_6 22.89 48.59 2.12 0.20  
       

 wm_7 13.70 46.04 3.36 0.12  
       

 wm_8 15.18 46.82 3.08 0.13  
       

 wm_9 2.59 34.53 13.36 0.03  
       

 wm_10 4.39 23.70 5.40 0.04  
       

 wm_11 11.11 42.61 3.83 0.09  
       

 wm_12 16.35 47.93 2.93 0.14  

   SD-V    
       

 w30_1 24.20 45.26 1.87 0.02  
       

 w30_2 41.17 52.96 1.29 0.35  
       

 w30_3 35.85 52.79 1.47 0.29  
       

 w30_4 31.75 52.11 1.64 0.26  
       

 w30_5 27.55 50.56 1.84 0.23  
       

 w30_6 26.63 50.01 1.88 0.23  
       

 w30_7 41.34 49.42 1.20 0.40  
       

 w30_8 41.62 48.71 1.17 0.43  
       

 w30_9 41.78 48.63 1.16 0.47  
       

 w30_10 41.88 47.61 1.14 0.48  

   SD-MD    
       

 w14_1 5.47 26.11 4.77 0.04  
       

 w14_2 34.24 49.43 1.44 0.27  
       

 w14_3 21.26 48.75 2.29 0.16  
       

 w14_4 16.52 47.85 2.90 0.13  
       

 w14_5 10.57 44.81 4.24 0.09  
       

 w14_6 41.45 49.35 1.19 0.40  
       

 w14_7 42.80 49.49 1.16 0.45  
        



 

 

Table 3. Summary of hysteresis properties for extracted EMs 

V-MD 

 Hc (mT) Hcr Hcr/Hc Mr/Ms 

EM1 33.0 52.6 1.6 0.38 

EM2 4.6 24.5 5.3 0.044 

V (obs) 31.0 52.9 1.7 0.37 

MD (obs) 4.5 24.4 5.5 0.045 

SD-V 

EM1 27.0 49.0 1.8 0.34 

EM2 42.0 48.0 1.1 0.54 

EM3 39.0 45.0 1.2 0.54 

SD (95%) 41.0 48.0 1.2 0.52 

V (obs) 24 48.5 2.0 0.34 

SD-MD 

EM1 6.0 26.8 4.5 0.07 

EM2 41.0 47.5 1.2 0.53 

EM3 37.5 43.5 1.2 0.55 

SD (92%) 39.7 47.5 1.2 0.49 

MD (obs) 5.2 26.9 5.1 0.07 
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