27,524 research outputs found

    Primitive roles for inhibitory interneurons in developing frog spinal cord

    Get PDF
    Understanding the neuronal networks in the mammal spinal cord is hampered by the diversity of neurons and their connections. The simpler networks in developing lower vertebrates may offer insights into basic organization. To investigate the function of spinal inhibitory interneurons in Xenopus tadpoles, paired whole-cell recordings were used. We show directly that one class of interneuron, with distinctive anatomy, produces glycinergic, negative feedback inhibition that can limit firing in motoneurons and interneurons of the central pattern generator during swimming. These same neurons also produce inhibitory gating of sensory pathways during swimming. This discovery raises the possibility that some classes of interneuron, with distinct functions later in development, may differentiate from an earlier class in which these functions are shared. Preliminary evidence suggests that these inhibitory interneurons express the transcription factor engrailed, supporting a probable homology with interneurons in developing zebrafish that also express engrailed and have very similar anatomy and functions

    Growth rates of the population in a branching Brownian motion with an inhomogeneous breeding potential

    Get PDF
    We consider a branching particle system where each particle moves as an independent Brownian motion and breeds at a rate proportional to its distance from the origin raised to the power pp, for p∈[0,2)p\in[0,2). The asymptotic behaviour of the right-most particle for this system is already known; in this article we give large deviations probabilities for particles following "difficult" paths, growth rates along "easy" paths, the total population growth rate, and we derive the optimal paths which particles must follow to achieve this growth rate.Comment: 56 pages, 1 figur

    J0316+4328: a Probable "Asymmetric Double" Lens

    Full text link
    We report a probable gravitational lens J0316+4328, one of 19 candidate asymmetric double lenses (2 images at a high flux density ratio) from CLASS. Observations with the Very Large Array (VLA), MERLIN and the Very Long Baseline Array (VLBA) imply that J0316+4328 is a lens with high confidence. It has 2 images separated by 0.40", with 6 GHz flux densities of 62 mJy and 3.2 mJy. The flux density ratio of ~19 (constant over the frequency range 6-22 GHz) is the largest for any 2 image gravitational lens. High resolution optical imaging and deeper VLBI maps should confirm the lensing interpretation and provide inputs to detailed lens models. The unique configuration will give strong constraints on the lens galaxy's mass profile.Comment: Accepted to MNRAS Letters. 5 pages, 6 figures, 3 table

    An Expansion Term In Hamilton's Equations

    Get PDF
    For any given spacetime the choice of time coordinate is undetermined. A particular choice is the absolute time associated with a preferred vector field. Using the absolute time Hamilton's equations are −(δHc)/(δq)=π˙+Θπ,- (\delta H_{c})/(\delta q)=\dot{\pi}+\Theta\pi, + (\delta H_{c})/(\delta \pi)=\dot{q},where, where \Theta = V^{a}_{.;a}istheexpansionofthevectorfield.Thusthereisahithertounnoticedtermintheexpansionofthepreferredvectorfield.Hamilton′sequationscanbeusedtodescribefluidmotion.Inthiscasetheabsolutetimeisthetimeassociatedwiththefluid′sco−movingvector.Asmeasuredbythisabsolutetimetheexpansiontermispresent.Similarlyincosmology,eachobserverhasaco−movingvectorandHamilton′sequationsagainhaveanexpansionterm.ItisnecessarytoincludetheexpansiontermtoquantizesystemssuchastheabovebythecanonicalmethodofreplacingDiracbracketsbycommutators.Hamilton′sequationsinthisformdonothaveacorrespondingsympleticform.Replacingtheexpansionbyaparticlenumber is the expansion of the vector field. Thus there is a hitherto unnoticed term in the expansion of the preferred vector field. Hamilton's equations can be used to describe fluid motion. In this case the absolute time is the time associated with the fluid's co-moving vector. As measured by this absolute time the expansion term is present. Similarly in cosmology, each observer has a co-moving vector and Hamilton's equations again have an expansion term. It is necessary to include the expansion term to quantize systems such as the above by the canonical method of replacing Dirac brackets by commutators. Hamilton's equations in this form do not have a corresponding sympletic form. Replacing the expansion by a particle number N\equiv exp(-\int\Theta d \ta)andintroducingtheparticlenumbersconjugatemomentum and introducing the particle numbers conjugate momentum \pi^{N}thestandardsympleticformcanberecoveredwithtwoextrafieldsNand the standard sympletic form can be recovered with two extra fields N and \pi^N$. Briefly the possibility of a non-standard sympletic form and the further possibility of there being a non-zero Finsler curvature corresponding to this are looked at.Comment: 10 page

    A microgravity isolation mount

    Get PDF
    The design and preliminary testing of a system for isolating microgravity sensitive payloads from spacecraft vibrational and impulsive disturbances is discussed. The Microgravity Isolation Mount (MGIM) concept consists of a platform which floats almost freely within a limited volume inside the spacecraft, but which is constrained to follow the spacecraft in the long term by means of very weak springs. The springs are realized magnetically and form part of a six degree of freedom active magnetic suspension system. The latter operates without any physical contact between the spacecraft and the platform itself. Power and data transfer is also performed by contactless means. Specifications are given for the expected level of input disturbances and the tolerable level of platform acceleration. The structural configuration of the mount is discussed and the design of the principal elements, i.e., actuators, sensors, control loops and power/data transfer devices are described. Finally, the construction of a hardware model that is being used to verify the predicted performance of the MGIM is described

    Effects of lateral diffusion on morphology and dynamics of a microscopic lattice-gas model of pulsed electrodeposition

    Full text link
    The influence of nearest-neighbor diffusion on the decay of a metastable low-coverage phase (monolayer adsorption) in a square lattice-gas model of electrochemical metal deposition is investigated by kinetic Monte Carlo simulations. The phase-transformation dynamics are compared to the well-established Kolmogorov-Johnson-Mehl-Avrami theory. The phase transformation is accelerated by diffusion, but remains in accord with the theory for continuous nucleation up to moderate diffusion rates. At very high diffusion rates the phase-transformation kinetic shows a crossover to instantaneous nucleation. Then, the probability of medium-sized clusters is reduced in favor of large clusters. Upon reversal of the supersaturation, the adsorbate desorbs, but large clusters still tend to grow during the initial stages of desorption. Calculation of the free energy of subcritical clusters by enumeration of lattice animals yields a quasi-equilibrium distribution which is in reasonable agreement with the simulation results. This is an improvement relative to classical droplet theory, which fails to describe the distributions, since the macroscopic surface tension is a bad approximation for small clusters.Comment: Minor corrections and modifications. 15 pages with 10 figures. Accepted for publication in the Journal of Chemical Physics, see http://jcp.aip.org/jcp

    Dimensional Reduction in Non-Supersymmetric Theories

    Full text link
    It is shown that regularisation by dimensional reduction is a viable alternative to dimensional regularisation in non-supersymmetric theories.Comment: 13 pages, phyzzx, LTH 32

    Integral Field Spectroscopy of a peculiar Supernova Remnant MF16 in NGC6946

    Full text link
    We present a study of a peculiar Supernova Remnant MF16, associated with the Ultraluminous X-ray Source (ULX) NGC6946 ULX-1. Observations were taken with the MultiPupil Fiber Spectrograph (MPFS) with 6-m telescope on January 2005. The nebula is found to be highly asymmetric, one of the parts being much denser and colder. The two-component structure of the emission lines and radial velocity gradient argue for a non-spherical nebula, expanding with a velocity of about 100 km/s. Neither shock models nor the X-ray emission can adequately explain the actual emission line spectrum of MF16, so we suggest an additional ultraviolet source with a luminosity of about 10E40 erg/s. We confirm coincidence of the ULX with the central star, and identify radio emission observed by VLA with the most dense part of the nebula.Comment: Proceedings of the ESO and Euro3D Workshop "Science Perspectives for 3D Spectroscopy", Garching (Germany), October 10-14, 2005. M. Kissler-Patig, M.M. Roth and J.R. Walsh (eds.

    Signatures of Young Star Formation Activity Within Two Parsecs of Sgr A*

    Full text link
    We present radio and infrared observations indicating on-going star formation activity inside the ∼2−5\sim2-5 pc circumnuclear ring at the Galactic center. Collectively these measurements suggest a continued disk-based mode of on-going star formation has taken place near Sgr A* over the last few million years. First, VLA observations with spatial resolution 2.17"×0.81""\times0.81" reveal 13 water masers, several of which have multiple velocity components. The presence of interstellar water masers suggests gas densities that are sufficient for self-gravity to overcome the tidal shear of the 4×106\times10^6 \msol\, black hole. Second, SED modeling of stellar sources indicate massive YSO candidates interior to the molecular ring, supporting in-situ star formation near Sgr A* and appear to show a distribution similar to that of the counter-rotating disks of ∼\sim100 OB stars orbiting Sgr A*. Some YSO candidates (e.g., IRS~5) have bow shock structures suggesting that they have have gaseous disks that are phototoevaporated and photoionized by the strong radiation field. Third, we detect clumps of SiO (2-1) and (5-4) line emission in the ring based on CARMA and SMA observations. The FWHM and luminosity of the SiO emission is consistent with shocked protostellar outflows. Fourth, two linear ionized features with an extent of ∼0.8\sim0.8 pc show blue and redshifted velocities between +50+50 and −40-40 \kms, suggesting protostellar jet driven outflows with mass loss rates of ∼5×10−5\sim5\times10^{-5} solar mass yr−1^{-1}. Finally, we present the imprint of radio dark clouds at 44 GHz, representing a reservoir of molecular gas that feeds star formation activity close to Sgr A*.Comment: 38 pages, 10 figures, ApJ (in press

    Control of threshold voltage in E-mode and D-mode GaN-on-Si metal-insulator-semiconductor heterostructure field effect transistors by in-situ fluorine doping of atomic layer deposition Al2O3 gate dielectrics

    Get PDF
    We report the modification and control of threshold voltage in enhancement and depletion mode AlGaN/GaN metal-insulator-semiconductor heterostructure field effect transistors through the use of in-situ fluorine doping of atomic layer deposition Al2O3. Uniform distribution of F ions throughout the oxide thickness are achievable, with a doping level of up to 5.5 × 1019 cm−3 as quantified by secondary ion mass spectrometry. This fluorine doping level reduces capacitive hysteretic effects when exploited in GaN metal-oxide-semiconductor capacitors. The fluorine doping and forming gas anneal also induces an average positive threshold voltage shift of between 0.75 and 1.36 V in both enhancement mode and depletion mode GaN-based transistors compared with the undoped gate oxide via a reduction of positive fixed charge in the gate oxide from +4.67 × 1012 cm−2 to −6.60 × 1012 cm−2. The application of this process in GaN based power transistors advances the realisation of normally off, high power, high speed devices
    • …
    corecore