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Abstract

We consider a branching particle system where each particle moves as an independent Brownian motion
and breeds at a rate proportional to its distance from the origin raised to the power p, for p ∈ [0, 2). The
asymptotic behaviour of the right-most particle for this system is already known; in this article we give
large deviations probabilities for particles following “difficult” paths, growth rates along “easy” paths, the
total population growth rate, and we derive the optimal paths which particles must follow to achieve this
growth rate.
Crown Copyright c⃝ 2015 Published by Elsevier B.V. This is an open access article under the CC BY
license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction and heuristics

1.1. The model

We study a branching Brownian motion (BBM) in an inhomogeneous breeding potential on
R. Fix β > 0, p ∈ [0, 2), and a random variable A, which takes values in {1, 2, . . .}, satisfying
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E[A log A] < ∞. We initialise our branching process with a single particle at the origin. Each
particle u, once born, moves as a Brownian motion, independently of all other particles in the
population. Each particle u alive at time T dies with instantaneous rate β|Xu(T )|p, where Xu(T )

is the spatial position of particle u (or of its ancestor) at time T . Upon death, a particle u is
replaced by a random number 1 + Au of offspring in the same spatial position, where each Au is
an independent copy of A. We define m := E[A], the average increase in the population size at
each branching event. We denote by N (T ) the set of particles alive at time T . We let P represent
the probability law, and E the corresponding expectation, of this BBM.

The case p = 2 is critical for this BBM: if the breeding rate were instead β| · |
p for p > 2, it

is known from Itô and McKean [23, Sections 5.12 to 5.14] that the population explodes in finite
time, almost surely. For p = 2, the expected number of particles explodes in finite time, but the
population remains finite, almost surely, for all time.

Branching Brownian motions are closely associated with certain partial differential equations.
In particular, for the above BBM model, the McKean representation tells us that

v(T, x) := E

 
u∈N (T )

f (x + Xu(T ))


solves the equation

∂v

∂T
=

1
2

∂2v

∂x2 + β|x |
p(G(v) − v) (1)

with the initial condition v(0, x) = f (x), where G(s) := E(s A) is the generating function of
the offspring distribution A. In the case of constant branching rate (p = 0), this is known as the
Fisher–Kolmogorov–Piscounov–Petrovski (FKPP) reaction–diffusion equation.

An object of fundamental importance in the study of branching diffusions is the right-most
particle, defined as RT := maxu∈N (T ) Xu(T ). Standard BBM, with binary branching at a constant
rate (that is, p = 0 and G(s) = s2), has been much studied. In this case, it is well known that
the linear asymptotic limT →∞ RT /T =

√
2β holds almost surely. The distribution function of

the right most particle position solves the FKPP equation with Heaviside initial conditions, and
it is known that P(RT ≥ m(T ) + x) → w(x) where w is a travelling-wave solution of (1)
and m(T ) is the median for the rightmost particle position at time T . Sub-linear terms for the
asymptotic behaviour of m(T ) =

√
2βT − 3/(2

√
2β) log T + O(1) were found by Bramson [7]

and [8]. See also the recent shorter probabilistic proofs by Roberts [31], and corresponding results
for branching random walk by Aidekon [1] and Hu and Shi [22]. For approaches using partial
differential equation theory, see the recent short proof by Hamel et al. [15] and an impressive
higher order expansion due to Van Saarloos [32]. Detailed studies of the paths followed by the
right-most particles have been carried out by Arguin et al. [3,4], and by Aidekon et al. [2].

For p ∈ (0, 2), right most particle speeds much faster than linear occur and Harris and
Harris [19] found an asymptotic for RT using probabilistic techniques involving additive
martingales and changes of measure.

Theorem 1 (Harris, Harris [19]). For p ∈ [0, 2),

lim
T →∞

RT

T
2

2−p

=


mβ

2
(2 − p)2

 1
2−p

almost surely.
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(Note that, as above, the theorems given in the present paper are all written for p ∈ [0, 2).
However most of our results were already known in the case p = 0.)

In this paper we study in more detail the paths followed by particles in the BBM. Theorem 1
suggests a rescaling of time and space, and we consider whether particles follow paths which,
after rescaling, lie in a particular subset of C[0, 1]. In Section 2, we give large deviations
probabilities for particles following “difficult” rescaled paths as well as results on the almost
sure growth rates for the number of particles following any “easy” path. From these results we
can derive the growth rate of the total number of particles in the BBM, and find the paths which
particles must follow to realise this growth rate; this involves solving certain path optimisation
problems subject to integral constraints, the solutions to which are not obvious, but nevertheless
can be found explicitly and have intuitive probabilistic interpretations. A surprising and very
significant feature arising from the spatially dependent branching rate of this model is the fact
that the expected number of particles and typical number of particles following paths do not
match, even on the exponential scale. For another example see the branching integrated Brownian
motion model in Git [12]. This phenomenon also occurs in branching processes in random
environments: see for example Vatutin and Dyakonova [34] or Ortgiese and Roberts [29].

Although this work is the natural sequel to [19], spatially dependent branching rates have
not often been studied in detail. See Git et al. [13], and Lalley and Sellke [24,25] for a case
with bounded breeding potential. Other studies of branching processes with time inhomogeneous
environments include recent works by Fang and Zeitouni [10,11], Bovier and Hartung [6], and
Mallein [28], where analogous path optimisation problems also appear. Recent developments in
the study of spatially inhomogeneous versions of the FKPP equation from the PDE’s perspective
include, for example, the periodic environments in Hamel et al. [14]. A key technique which is
used in [15,14] is to relate the non-linear PDE problem to a free boundary linearised PDE one.
In fact, such free boundary problems are intimately related to the probabilistic constrained path
optimisation problems (discussed in Section 2.4). We note that, with the exception of [19,13],
the above articles are all concerned with bounded environments.

Unbounded branching rates lead to unusual features and pose considerable technical diffi-
culties, much as their corresponding unbounded non-linear differential operators would. One
manifestation of the unbounded branching rates is the position of the right-most particle growing
faster than linearly in time (as in Theorem 1); another is the disagreement of expected and typical
particle behaviours.

We start by giving a very rough heuristic explanation for some of our results. The technical
details, relevant definitions and precise statements of our main results will be given in Section 2.
We have strived to make the heuristics as clear as possible in the hope that the reader can gain a
good understanding of our main results without necessarily having to read the technical details
in the rigorous proofs of Sections 3–6. The solution of the constrained path optimisation problem
and it properties are found in Sections 7 and 8.

1.2. Heuristics

Whilst we are mainly interested in the almost sure behaviour of the inhomogeneous branching
Brownian motion, this is typically much harder to obtain than the expected behaviour. However,
we will be able to get a very good intuitive understanding of the almost sure behaviour by care-
fully considering expectations of the number of particles that travel close to given trajectories.

In a sense that Schilder’s Theorem [33] from Large Deviation theory can make precise, the
small probability that a Brownian motion B manages to stay ‘close’ to some given trajectory F
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is very roughly given by

P(B stays ‘close’ to F during [0, T ]) ≈ exp


−
1
2

 T

0
F ′(s)2ds


where F : [0, T ] → R is suitably ‘nice’ with F(0) = 0 and T is some large time.

Since any particles that are close to trajectory F at time s will give birth to an average of m
new offspring at a rate close to β|F(s)|p, the expected total number of particles that have stayed
close to trajectory F up to time T will very roughly be given by

E

#{u ∈ N (T ) : Xu ‘close’ to F}


≈ exp

 T

0


mβ|F(s)|p

−
1
2

F ′(s)2


ds


. (2)

Heuristically, we can think of the number of particles travelling along a ‘nice’ trajectory F
as behaving roughly like a time-dependent birth–death process (see [18]) with a birth rate
mβ|F(s)|p and a death rate 1

2 F ′(s)2. It is now natural to look for a scaling of paths where the birth
and death rates are of the same order of magnitude. That is, if we consider trajectories of the form

F(s) = T
2

2−p f
 s

T


(3)

where T is large and f : [0, 1] → R is some fixed function, then (2) leads to

log E

#{u ∈ N (T ) : u follows f }


∼ T

2+p
2−p

 1

0


mβ| f (s)|p

−
1
2

f ′(s)2


ds, (4)

where by ‘u follows f ’ we mean that the rescaled particle path, T −2/(2−p) Xu(sT ), remains
within some very small distance of the given rescaled path f (s) for all s ∈ [0, 1]. Essentially,
this is Theorem 2 which reveals how the expected number of particles varies along a given scaled
up path: heuristically, for t ∈ [0, 1] and T large,

log E

#{u ∈ N (tT ) : u follows f up to time t}


∼ T

2+p
2−p K ( f, t) (5)

where

K ( f, t) :=

 t

0


mβ| f (s)|p

−
1
2

f ′(s)2

ds (6)

for ‘nice’ functions f : [0, 1] → R with f (0) = 0. The functional K ( f, t) is of fundamental
importance for the inhomogeneous BBM and will play a crucial role throughout this paper.

We will show that the expected number of particles which end up near the rescaled position
z (corresponding to actual position T 2/(2−p)z) grows like the expected number of particles
following some optimal rescaled path hz ending at z,

log E

#{u ∈ N (T ) : rescaled path of u ends near z}


∼ T

2+p
2−p K (hz, 1), (7)

where K (hz, 1) = sup f


K ( f, 1) : f (1) = z

. The optimal function hz satisfies the correspond-

ing Euler–Lagrange equation h′′
z + mβph p−1

z = 0 with hz(0) = 0 and hz(1) = z. Optimising
over z then suggests that the expected total population size satisfies
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log E

N (T )


∼ T

2+p
2−p sup

z
K (hz, 1) = T

2+p
2−p sup

f
K ( f, 1). (8)

Theorem 4 confirms these heuristics and explicitly identifies the expected total population growth
rate.

However, a more surprising fact is that these results on the expected number of particles are
not representative of a typical realisation of the system. Indeed, a dominant contribution to the
expected number of particles at large time T can come from vanishingly rare events where parti-
cles go very far away from the origin to take advantage of high reproduction rates. Note that, for
any t ∈ [0, 1],

P(some particle follows f up to t) = inf
s∈[0,t]

P(some particle follows f up to time s)

≤ inf
s∈[0,t]

E

#{u ∈ N (sT ) : u follows f up to s}


,

. exp

T

2+p
2−p inf

s∈[0,t]
K ( f, s)


(9)

where we use . in a rough sense to mean that we are throwing away terms of smaller order. If
infs∈[0,t] K ( f, s) < 0, then the path f is ‘difficult’ and it is very unlikely to be observed in a
typical realisation, even if K ( f, 1) > 0 so that the expected number of particles alive at time T
having followed that path is very large. We are in fact able to show that, for a difficult path, the
last inequality in (9) will be attained up to leading order in the exponent, and hence that ‘difficult’
paths will satisfy

log P (some particle follows f up to t) ∼ T
2+p
2−p inf

s∈[0,t]
K ( f, s) < 0. (10)

This probability of presence result is stated rigorously in Theorem 8. Looking for the trajectory
that travels the furthest without being ‘difficult’ leads us to guess that the right-most particle
boundary satisfies mβr(s)p

−
1
2r ′(s)2

≡ 0 with r(0) = 0 (in agreement with Theorem 1).
On the other hand, if we have not yet had any ‘difficult’ points along the path, we might guess

that the almost sure and the expected growth rates will still agree. Indeed, Theorem 5 will confirm
that, roughly speaking, we almost surely have

log #{u ∈ N (tT ) : u follows f up to t} ∼ T
2+p
2−p K ( f, t)

if K ( f, s) ≥ 0 for all s ∈ [0, t] (11)

for any t ∈ [0, 1]. Hence, if K ( f, s) is always non-negative there will almost surely be some
particles following f in the large T limit. On the other hand, if K ( f, s) becomes strictly negative
for the first time at some time θ0 then it becomes exponentially unlikely that any particle makes
it past this bottleneck; θ0 corresponds to the extinction time along this ‘difficult’ path f .

Finally, we anticipate that the almost sure number of particles which end up near the rescaled
position z, with |z| ≤ r(1), will grow like the expected number of particles following some
optimal path gz that does not undergo any extinction:

log #{u ∈ N (T ) : rescaled path of u ends near z} ∼ T
2+p
2−p K (gz, 1), (12)

where K (gz, 1) = sup f


K ( f, 1) : f (1) = z, K ( f, s) ≥ 0 for all s ∈ [0, 1]

. The optimal path

gz that gives rise to the vast majority of particles turns out to have two distinct phases. Initially,
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it follows the trajectory of the right-most particle, thereby gaining optimal potential for future
growth without becoming extinct. Then, after some optimal intermediate time, it “cashes in”
during the second phase, switching over to the path that maximises growth, which is the path
that satisfies g′′

z + mβpg p−1
z = 0 with gz(1) = z. We will see that, in addition, the optimal

path necessarily has a continuous derivative and this property determines the point at which one
switches from one phase to the other.

The almost sure total number of particles in the system can now be recovered by optimising
over z, with

log |N (T )| ∼ T
2+p
2−p sup

z
K (gz, 1)

= T
2+p
2−p sup

f


K ( f, 1) : K ( f, s) ≥ 0 for all s ∈ [0, 1]


.

In particular, this will reveal that the almost sure population growth rate is strictly smaller than
the expected population growth rate; the constraint that the paths cannot have passed through any
extinction times has a significant effect.

2. Main results

Fix a set D ⊂ C[0, 1] and t ∈ [0, 1]. We are interested in the sets

NT (D, t) :=


u ∈ N (tT ) : ∃ f ∈ D with Xu(sT ) = T

2
2−p f (s) ∀s ∈ [0, t]


(13)

for large T . We will typically consider sets of the form D = B( f, ϵ) for a given f (the ball of
C[0, 1] with centre f and radius ϵ);1 in this case NT (D, t) is the set of particles alive at time tT
whose rescaled paths up to that point have stayed within distance ε of f . Thus, for a given path
f which we keep rescaling in space and time according to large T, NT (D, t) tells us how the
population following that path grows and shrinks as t varies between 0 and 1.

Define the class H1 of functions by

H1 :=


f ∈ C[0, 1] : ∃g ∈ L2

[0, 1] with f (t) =

 t

0
g(s) ds ∀t ∈ [0, 1]


,

and to save on notation set f ′(s) := ∞ if f ∈ C[0, 1] is not differentiable at the point s. Observe
that f ∈ H1 implies f (0) = 0.

We can now define K precisely: for f ∈ C[0, 1] and t ∈ [0, 1],

K ( f, t) :=


 t

0


mβ| f (s)|p

−
1
2

f ′(s)2

ds if f ∈ H1,

−∞ otherwise.

We use throughout the paper the convention that inf ∅ = +∞ and sup ∅ = −∞.

2.1. Expected population growth

Our first result is rather straightforward and gives the behaviour of the expectation of the
number of particles following paths in some set.

1 In this paper, the space C[0, 1] of continuous functions on [0, 1] is always endowed with the L∞ topology.
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Theorem 2. For any closed set D ⊂ C[0, 1] and t ∈ [0, 1],

lim sup
T →∞

1

T
2+p
2−p

log E|NT (D, t)| ≤ sup
f ∈D

K ( f, t),

and for any open set A ⊂ C[0, 1] and t ∈ [0, 1],

lim inf
T →∞

1

T
2+p
2−p

log E|NT (A, t)| ≥ sup
f ∈A

K ( f, t)

Moreover, if we define

KE(z) := sup


K ( f, 1) : f ∈ C[0, 1], f (1) = z

, (14)

we have the following easy corollary:

Corollary 3. For each ε > 0 and z ∈ R, let Dz,ϵ := { f ∈ C[0, 1] : | f (1) − z| ≤ ϵ}. Then

lim
ϵ→0

lim
T →∞

1

T
2+p
2−p

log E|NT (Dz,ϵ, 1)| = KE(z).

Therefore, KE(z) controls the growth rate of the expectation of the number of particles which
end up near z on the rescaled space. The next theorem shows that the supremum defining
KE(z) corresponds to a unique optimal path hz ; optimising over z then gives the total expected
population growth.

Theorem 4. For z ∈ R, the optimisation problem

KE(z) = K (hz, 1)

has a solution hz ∈ C2
[0, 1] which is unique for z ≠ 0 amongst all H1 functions ending at z.

For z ≥ 0, the solution hz is positive and satisfies for all s ∈ [0, 1]

h′′
z (s) + mβphz(s)

p−1
= 0, hz(0) = 0, hz(1) = z.

Furthermore there exists a unique ẑE ≥ 0 such that

K̂E := KE(ẑE) = sup
z

KE(z) = sup
f ∈C[0,1]

K ( f, 1).

Then the expected total population size satisfies

lim
T →∞

1

T
2+p
2−p

log E|N (T )| = K̂E,

where one finds

h′

ẑE
(1) = 0, ẑE =

(2mβ)
1

2−p 1
0

dx
√

1−x p

 2
2−p

= (2mβ)
1

2−p

 Γ


1
2 +

1
p


√

π Γ


1 +
1
p




2
2−p

and

K̂E =
2 − p

2 + p
mβ ẑ p

E.
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Remark. For z < 0, one has hz(s) = −h−z(s). For z = 0 and p > 0, there are two symmetrical
optimal paths, one positive and one negative. For z = 0 and p = 0 the optimal path is unique
and equal to h0 = 0.

2.2. Almost sure growth along paths

Let us now focus on the problem of giving an almost sure result for the actual number of
particles that have a rescaled path lying in some set D.

We let

θ0( f ) := inf {t ∈ [0, 1] : K ( f, t) < 0} ∈ [0, 1) ∪ {∞}.

We think of θ0 as the extinction time along f , the time at which the number of particles following
f hits zero: if t > θ0( f ), basically at large times no particle has a path that looks like f up to
time t . On the other hand, if t ≤ θ0( f ), the number of particles with a rescaled path looking
like f up to time t grows like the expected number of particles following that path. This is made
precise in Theorem 5.

Theorem 5. For any closed set D ⊂ C[0, 1] and t ∈ [0, 1],

lim sup
T →∞

1

T
2+p
2−p

log |NT (D, t)| ≤ sup{K ( f, t) : f ∈ D, θ0( f ) ≥ t} almost surely,

and for any open set A ⊂ C[0, 1] and t ∈ [0, 1],

lim inf
T →∞

1

T
2+p
2−p

log |NT (A, t)| ≥ sup{K ( f, t) : f ∈ A, θ0( f ) ≥ t} almost surely.

Moreover, if one defines

K a.s.(z) := sup


K ( f, 1), f ∈ C[0, 1], f (1) = z, θ0( f ) = ∞

, (15)

we obtain the following corollary:

Corollary 6. For z ∈ R,

lim
ϵ→0

lim
T →∞

1

T
2+p
2−p

log |NT (Dz,ϵ, 1)| = K a.s.(z) almost surely.

Therefore, K a.s.(z) controls the growth rate of the almost sure number of particles which end
up near z on the rescaled space. The next theorem shows that the supremum defining K a.s.(z)
corresponds to a unique optimal path gz (that, therefore, most particles ending up near z must
have followed); optimising over z then yields the almost sure total population size growth. Let

r(s) :=


mβs2

2
(2 − p)2

 1
2−p

and z̄ := r(1) =


mβ

2
(2 − p)2

 1
2−p

. (16)

Observe that by Theorem 1, for all s ∈ [0, 1], RsT /T 2/(2−p)
→ r(s) almost surely as T → ∞.

This means that r(s) describes the boundary of the limiting shape of the trace of the rescaled
BBM and z̄ is the rescaled position of the right-most particle at time 1.
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Theorem 7. For each z ∈ [−z̄, z̄], one has

K a.s.(z) = sup{K ( f, 1) : f ∈ C[0, 1], f (1) = z, | f (s)| ≤ r(s) ∀s ∈ [0, 1]}. (17)

Moreover, the optimisation problem

K a.s.(z) = K (gz, 1)

has a solution gz which is unique for z ≠ 0 amongst all H1 functions ending at z such that
θ0(·) = ∞. For |z| > z̄ one has K a.s.(z) = −∞, which means that no function of H1 with
θ0(·) = ∞ reaches z.

The solution gz for 0 ≤ z ≤ z̄ is characterised as follows: there exists a unique sz ∈ [0, 1]

such that

(i) for all s ∈ [0, sz], gz(s) = r(s)
(ii) for all s ∈ (sz, 1], gz is twice continuously differentiable and

g′′
z (s) + mβpgz(s)

p−1
= 0, gz(1) = z; (18)

(iii) gz is differentiable at sz .

Furthermore there exists a unique ẑ a.s. ≥ 0 such that

K̂ a.s. := K a.s.(ẑ a.s.) = sup
z

K a.s.(z) = sup


K ( f, 1), f ∈ C[0, 1], θ0( f ) = ∞

.

Then the almost sure total population size satisfies

lim
T →∞

1

T
2+p
2−p

log |N (T )| = K̂ a.s. almost surely,

where one finds

g′

ẑ a.s.
(1) = 0, ẑ a.s. =

 √
2mβ

2
3p−2

2p

2−p +
 1

2−1/p
dx

√
1−x p


2

2−p

and

K̂ a.s. =
2 − p

2 + p
mβ ẑ p

a.s..

Remark. It is easy to see that for z ≥ 0 we need only consider positive functions since
for a general g, K (|g|, t) = K (g, t) for all t ∈ [0, 1], and it is not hard to see that for all
t, z > 0, gz(t) > 0. For p = 0, one has sz = 0 ∀z ∈ [0, z̄) and the almost-sure and expectation
paths coincide. When p > 0, the proofs will make clear that sz > 0 ∀z ∈ [0, z̄]. In particular
this means (still when p > 0) that the majority of particles found near the origin have in fact
followed either the left-most or right-most path for some proportion of their history and travelled
a long way out before increasing in number whilst heading back away from the frontier.

An easy consequence of the theorem is that r(s) describes not only the limiting trace of the
BBM, but also the actual rescaled trajectory of the rightmost particle at time T . It is the trajectory
on the onset of extinction, the one for which K (r, t) = 0 for all t or, equivalently, for which

1
2

r ′(s)2
= mβr(s)p, with r(0) = 0, (19)
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as can be directly checked from (16). It is interesting to observe that r thus satisfies r ′′(s) =

mβpr(s)p−1. The solution gz thus satisfies the same second-order differential equation on [0, sz)

and (sz, 1] up to a sign difference on the second term.

2.3. Probability of presence

If f is such that θ0( f ) < 1, Theorem 5 suggests that as T becomes large the number of
particles whose rescaled paths have stayed close to f is almost certainly 0. The following large
deviations result shows how the probability of presence of a particle close to f up to time t
decreases as t goes from 0 to 1.

Theorem 8. For any closed set D ⊂ C[0, 1] and t ∈ [0, 1],

lim sup
T →∞

1

T
2+p
2−p

log P(NT (D, t) ≠ ∅) ≤ sup
f ∈D


inf
s≤t

K ( f, s)


and for any open set A ⊂ C[0, 1] and t ∈ [0, 1],

lim inf
T →∞

1

T
2+p
2−p

log P(NT (A, t) ≠ ∅) ≥ sup
f ∈A


inf
s≤t

K ( f, s)


The case p = 0 was proved by Lee [27] and again by Hardy and Harris [16].

2.4. Relationship to differential equations

In this section we try to show how several of our results can actually be guessed from heuristic
manipulations of partial differential equations. Although the whole discussion is informal it leads
us to a theorem which gives an alternative description of K a.s. and KE.

The expected density ρ(x, T ) of points at position x and time T in the BBM we are studying
can be written as the solution of the partial differential equation

∂ρ

∂T
=

1
2

∂2ρ

∂x2 + mβ|x |
pρ. (20)

Corollary 3 suggests that for large T ,

log ρ(x, T ) ∼ T
2+p
2−p KE(z) with z =

x

T
2

2−p

. (21)

If we then plug (21) into (20) we get a differential equation: for T large, neglecting a term of
order T −(2+p)/(2−p)K ′′

E(z), we get

1
2


K ′

E(z) +
2z

2 − p

2

=
2 + p

2 − p
KE(z) +

2z2

(2 − p)2 − mβ|z|p. (22)

It is not obvious at first that the KE(z) defined in (14) is indeed a solution of (22) but we will
show that this is the case in Theorem 9. The differential equation, however, is not enough to fully
obtain KE(z) as there is no obvious initial condition.

A natural question is now: is there a differential equation of which K a.s.(z) is solution?
K a.s.(z) describes the growth rate of the almost sure number of particles at rescaled position
z and it is different from the expected growth rate KE(z) because of some extremely rare events
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(on which particles go far away and reproduce a lot) which contribute to KE(z) and not to K a.s.(z)
in the T → ∞ limit.

With this in mind, we now consider the inhomogeneous BBM with killing, where we remove
any particles that ever cross the two space–time boundaries (s, ±x̄(s))s≥0, for some given
function x̄(·). The expected density ρ̃(x, T ) of particles at position x at time T in this BBM
with killing is then a solution of

∂ρ̃

∂T
=

1
2

∂2ρ̃

∂x2 + mβ|x |
pρ̃,

ρ̃

±x̄(T ), T


= 0.

(23)

If the absorbing boundary x̄(·) is taken to be the typical trajectory of the right-most particle,
r(·), (see Theorem 1 and Eq. (16)), this in effect kills all those rare difficult paths and one might
hope heuristically that ρ̃(x, T ) describes, in some sense, the almost sure density of points in the
original problem without the absorbing boundaries:

log ρ̃(x, T ) ∼ T
2+p
2−p K a.s.(z) with z =

x

T
2

2−p

. (24)

In fact, this heuristic does turn out to be the case. Indeed, the a.s. growth rate, K a.s.(z), is given
by maximising over paths that end at z and do not undergo extinction at any point, as in (15) and
Corollary 6. However, K a.s.(z) can also be expressed by maximising over paths that end at z and
never go beyond the right/left-most paths, as in (17) of Theorem 7. This equivalent representation
is exactly the same as would be obtained for the expected growth rate in the BBM with killing at
±r(s), hence K a.s.(z) is indeed given by Eq. (24) where ρ̃ satisfies PDE (23).

Further, we might even hope to determine r(·) in a self-consistent way: if, in (23), x̄(T ) is
significantly smaller than the almost sure position of the right-most particle, then many particles
will gather close to the line and we can expect ρ̃(x̄(T ) − 1, T ) to be large. On the other hand, if
x̄(T ) is chosen significantly larger than the almost sure position of the right-most particle, then
very few particles should come close to the boundary and ρ̃(x̄(T ) − 1, T ) should be small. Only
for x̄(T ) close to the almost sure position of the right-most particle can we expect ρ̃(x̄(T )−1, T )

to be of order one. We therefore reformulate (23) into
∂ρ̃

∂T
=

1
2

∂2ρ̃

∂x2 + mβ|x |
pρ̃,

ρ̃

±x̄(T ), T


= 0,

∂ρ̃

∂x
(±x̄(T ), T


= ±1,

(25)

where we solve now simultaneously for the two unknowns ρ̃ and x̄ .

We now plug (24) into (25) and, as the equations in the bulk for ρ and ρ̃ are the same, we
obtain the same Eq. (22) for K a.s.(z) as for KE(z), albeit with different boundary conditions.
From (25) we see that ρ̃(x, T ) = 0 for x > x̄(T ). Thus (24) means that K a.s.(z) is not defined
for z above some threshold value. Therefore we look for a solution of (22) only defined up to a
finite value of z, which can only be the rescaled almost sure position z̄ of the right-most particle,
as defined in (16). The only way for this to happen is for the right-hand side of (22) to vanish at
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z = z̄:

2 + p

2 − p
K a.s.(z̄) +

2z̄2

(2 − p)2 − mβ|z̄|p
= 0. (26)

(When the right-hand side reaches 0, one can check that the second derivative diverges and
the solution cannot be continued beyond that point.) Furthermore, one must have K a.s.(z̄) = 0
from the second boundary condition in (25); indeed K a.s.(z̄) > 0 would correspond to having
increasingly many particles at the boundary while K a.s.(z̄) < 0 would mean that the number of
particles next to the boundary goes to zero. We thus recover the expression for z̄ given in (16) as
a solution of (26).

From the descriptions of KE(z) and K a.s.(z) given in Theorems 4 and 7, one can show that,
indeed,

Theorem 9. KE(z) and K a.s.(z) as defined in Theorems 4 and 7 are, for z ≥ 0, two solutions of
the following differential equation:

K ′(z) = −
2z

2 − p
+


2

2 + p

2 − p
K (z) +

4z2

(2 − p)2 − 2mβz p. (27)

(Note that (27) is not implied by (22) as we could have put a minus sign in front of the square
root. We will show in the proof section that K ′(0+) ≥ 0 which justifies the choice of the plus
sign. For z ≤ 0, by parity of K (z), the other sign must be chosen.)

This approach from partial differential equations can be extended to the case p = 2. Consider-
ing only the particles that do not go further away than the almost sure position of the right-most,
we start from (25) with p = 2. The scaling function (24) obviously does not work for p = 2, but
if one plugs

log ρ̃(x, T ) ≈ e2AT L(z) with z = xe−AT (28)

into (25) one gets that

1
2


L ′(z) + Az

2
= 2AL(z) +

1
2

A2z2
− mβz2 (29)

where a term of order e−2AT L ′′(z) has been neglected. (29) has exactly the same structure as
(22) except that A is a priori an unknown quantity. However, requesting as for p < 2 that the
right-hand side vanishes at z = z̄ and that L(z̄) = 0 implies that

A =


2mβ (30)

so that the equation reads

1
2


L ′(z) +


2mβ z

2
= 2


2mβ L(z), (31)

or, taking the square root for z ≥ 0,

L ′(z) = −


2mβ z + 2


2mβ L(z). (32)

(We put a plus sign in front of the square root by analogy with the p < 2 case.)
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Note already that (30) with (28) allows one to recover the results from Berestycki et al. [5]:

For p = 2 and m = 1, lim
T →∞

1
T

log log |N (T )| = 2


2β almost surely, (33)

and from Harris and Harris [19]:

For p = 2 and m = 1, lim
T →∞

1
T

log RT =


2β almost surely. (34)

(Although the two papers [5,19] only concerned the binary branching (m = 1) case, their results
(33) and (34) could easily be extended to the more general branching process of the present
paper, with an arbitrary value of m.)

Going further, (32) can be solved by making the change of variable L(z) =
√

2mβ z2φ(z)2

with φ(z) ≥ 0. One gets for z ≥ 0

2zφ2(z) + 2z2φ(z)φ′(z) = −z + 2zφ(z) (35)

For z > 0 the variables can be separated

2φ(z)φ′(z)

2φ2(z) − 2φ(z) + 1
= −

1
z
, (36)

and, after integration of both sides and simplification, one gets an implicit form for L(z):
L(z) =


2mβ z2φ2

z = C
exp [arctan(1 − 2φ)]

2φ2 − 2φ + 1
with φ ≥ 0

(37)

where C is an integration constant. By taking φ → ∞ one obtains L(0). The rescaled position z̄
of the right-most particle is when L(z̄) = 0 or φ = 0. From (31), the optimal position ẑ where L
is maximal is such that L(ẑ) =

√
2mβ ẑ2/4 or φ = 1/2. This leads to

L(0) =


2mβ
C2

2
e−π , z̄ = Ce

π
4 , ẑ = C

√
2, L(ẑ) =


2mβ

C2

2
. (38)

Remark. We have no theory for the value of the integration constant C . In fact we believe
that C is realisation-dependent, since small changes in the behaviour of the particles at small
times can have drastic effects on size of the population later. This method allows us how-
ever to make some conjectures on the values of several ratios such as z̄/ẑ = (the position
of the right-most)/(the position where the density of particles is the highest), or L(ẑ)/z̄2

=

log |NT |/(position of the right-most)2. We have no demonstration for these conjectures. We sim-
ply observe that, for instance, the value of the ratio z̄/ẑ computed in the p < 2 case (see equa-
tion (16) and Theorem 7) converges as p → 2 to the ratio predicted by (38).

2.5. Explicit calculations for p = 1

It is interesting to note that for p = 1 (as well as for the easier case p = 0) the equations
given by Theorems 4 and 7 can be solved explicitly. See Fig. 1.



J. Berestycki et al. / Stochastic Processes and their Applications 125 (2015) 2096–2145 2109

• The rightmost particle satisfies RT ∼
1
2 mβT 2 a.s.

• The optimal path for expected growth with end-point z ≥ 0 is given by

hz(s) = −
1
2

mβs2
+


z +

1
2

mβ


s

with growth rate

KE(z) =
1

24
m2β2

+
1
2

mβz −
1
2

z2.

• The optimal end-point for expected growth is ẑE =
1
2 mβ, giving the optimal path

h ẑE(s) = −
1
2

mβs2
+ mβs

and total expected growth rate K̂E = m2β2/6.
• r(s) =

1
2 mβs2 and z̄ =

1
2 mβ.

• The optimal path for almost sure growth with end-point z ∈ [0, z̄] is given by

gz(s) =


mβ

2
s2 if s ∈ [0, sz]

−
mβ

2
s2

+ 2mβszs − mβs2
z if s ∈ (sz, 1]

where sz = 1 −


1
2 −

z
mβ

. The corresponding growth rate is

K a.s.(z) = m2β2


1
2

−
z

mβ
−

1
6


2 −

4z

mβ

3/2


.

• The optimal end-point for almost sure growth is ẑ a.s. =
mβ
4 , giving the optimal path

gẑ a.s.(s) =


mβ

2
s2 if s ∈


0,

1
2


−

mβ

2
s2

+ mβs −
mβ

4
if s ∈


1
2
, 1


and total almost sure growth rate K̂ a.s. = m2β2/12.

We note in particular that there is positive expected growth for all |z| < mβ

1/2+1/

√
3


despite
almost sure extinction for all |z| > mβ/2. Only for p = 0 do the almost sure and expected growth
match.

2.6. Proof strategy

As already pointed out in the introduction, the results in expectation (Theorems 2 and 4) can
be derived in a rather straightforward fashion from Schilder’s large deviation theorem and the
use of the so-called many-to-one principle (see Section 4). Some fairly standard large deviations
techniques (using for example the exponential tightness of Brownian motion) can then be used
to deduce the large deviations behaviour of the system seen in Theorem 8 (see Section 6).

For the almost sure growth along paths, however, we need something stronger. Using the
many-to-one lemma we construct in Section 3 processes that are non-negative martingales which
count the numbers of particles whose paths lie in certain sets. We then use the fact that these
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Fig. 1. For p = 1 and mβ = 1, the thick (red) line in the left-hand graph shows r(s), the (rescaled) path taken by the
right-most particle. The thinner lines show, for various values of the endpoint z, the optimal paths gz(s) for almost sure
growth (plain blue lines) and hz(s) for expected growth (dashed green lines). In the right-hand graph we show the profiles
K a.s.(z) and KE(z) of the number of particles alive at each position z for almost sure growth (plain blue) and expected
growth (dashed green).

martingales have almost surely finite limits to obtain an almost sure upper bound on the number
of particles whose rescaled paths remain close to f . It is also quite usual, at least within the world
of branching processes, that if an additive martingale – like ours – is uniformly integrable, then
it has a strictly positive limit, giving us our almost sure lower bound. Again this is true in our
case, although showing it is highly non-trivial — a large part of the work for this article is spent
in proving this lower bound.

We then set about proving the results concerning how many particles follow particular paths.
In Section 5 we prove Theorem 5, applying many of the results obtained in the previous two
sections.

We move on in Section 7 to derive the optimal paths seen in Theorems 7 and 4, and study
these paths further (in particular proving Theorem 9) in Section 8.

3. A family of spine martingales

3.1. The spine setup

A key idea in our proofs will be the use of certain additive martingales. These martingales can
be used to define changes of measure under which one particle behaves differently than under the
law P of our branching particle system. The tools introduced in this way are extremely useful, and
should be fairly intuitive. As they are now well-embedded in the branching process literature, we
will leave out several proofs in this section, and refer the interested reader to Hardy and Harris’
general formulation in [17]. Here the reader can also find details of the notation that we use, in
particular the Ulam–Harris notation for genealogical trees. We only mention briefly here that if
one particle, u, is a strict ancestor of another particle v, then we write u < v.

We first embellish our probability space by keeping track of some extra information about
one particular infinite line of descent or spine. This line of descent is defined as follows: our one
initial particle is part of the spine; when this particle dies, we choose one of its children uniformly
at random to become part of the spine. We continue in this manner: when the spine particle dies,
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we choose one of its children uniformly at random to become part of the spine. In this way at
any time t ≥ 0 we have exactly one particle in N (t) that is part of the spine. We refer to both this
particle and its position with the label ξt ; this is a slight abuse of notation, but it should always
be clear from the context which meaning is intended. The spatial motion of the spine, (ξt )t≥0, is
a standard Brownian motion.

The resulting probability measure we denote by P̃, and we find need for four different filtra-
tions to encode differing amounts of this new information:

• Ft contains all the information about the original system up to time t . However, it does not
know which particle is the spine at any point. Thus it is simply the natural filtration of the
branching Brownian motion.

• F̃t contains all the information about both the BBM and the spine up to time t .
• G̃t contains all the information about the spine up to time t , including the birth times of other

particles along its path and how many children are born at each of these times; it does not
know anything about the rest of the tree.

• Gt contains just the spatial information about the spine up to time t ; it does not know anything
about the rest of the tree.

We note that Ft ⊂ F̃t and Gt ⊂ G̃t ⊂ F̃t , and also that P̃ is an extension of P in that P = P̃|F∞
.

Lemma 10 (Many-to-one Lemma). If g(t) is F̃t -measurable it can be written in the form

g(t) =


u∈N (t)

gu(t)1{ξt =u}

where each gu(t) is Ft -measurable, and then

E

 
u∈N (t)

gu(t)


= Ẽ[emβ

 t
0 |ξs |

pds g(t)].

This lemma is extremely useful as it allows us to reduce questions about the entire population
down to calculations involving just one standard Brownian motion — the spine. A proof of a
more general version of this lemma may be found in [17].

3.2. Martingales and changes of measure

For p ∈ [0, 2), f ∈ C[0, 1], θ ∈ [0, 1] and ε > 0, let

q :=
2

2 − p
∈ [1, ∞)

and define

NT ( f, ε, θ) :=

u ∈ N (θT ) : |Xu(t) − T q f (t/T )| < εT q

∀t ∈ [0, θT ]


so that NT ( f, ε, θ) = NT (B( f, ε), θ), see (13), where

B( f, ε) := {g ∈ C[0, 1] : ∥ f − g∥∞ < ε} .

We look for martingales associated with these sets. For convenience, in this section we use the
shorthand

NT (t) := NT ( f, ε, t/T )
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and

CT (x, t) := cos
 π

2εT q (x − T q f (t/T ))


.

The following Lemma is adapted from Lemma 6 in [20].

Lemma 11. If f ∈ C2
[0, 1] then the process

VT (t) := eπ2t/(8ε2T 2q )+T q−1  t
0 f ′(s/T )dξs−

1
2 T 2q−2  t

0 f ′(s/T )2dsCT (ξt , t), t ∈ [0, T ]

is a Gt -local martingale under P̃.

Proof. Since the motion of the spine is simply a standard Brownian motion under P̃, this is easily
checked by applying Itô’s formula (the sufficient conditions of, for example, Lawler [26] tell us
that if f ∈ C2

[0, 1] then VT is sufficiently smooth for Itô’s formula to hold). See [20, Lemmas 5
and 6], for the calculations. �

By stopping the process (VT (t), t ∈ [0, T ]) at the first exit time of the Brownian motion from
the tube {(x, t) : |T q f (t/T ) − x | < εT q

}, we obtain also that

ζT (t) := VT (t)1{|T q f (s/T )−ξs |<εT q ∀s≤t}, t ∈ [0, T ]

is a non-negative Gt -local martingale, and since its size is then clearly constrained it must in fact
be a Gt -martingale. As in [17], we may build from ζT a collection of F̃t -martingales ζ̃T given by

ζ̃T (t) :=


v<ξt

(1 + Av)e
−mβ

 t
0 |ξs |

pdsζT (t), t ∈ [0, T ]

where we write {v < ξt } for the set of strict ancestors of the spine particle at time t . When we
project ζ̃T (t) back onto Ft we get a new set of mean-one Ft -martingales (ZT (t), t ≥ 0). These
processes ZT are the main objects of interest in this section, and can be expressed for t ∈ [0, T ]

as the sum

ZT (t) =


u∈NT (t)

ζ
(u)
T (t)e−mβ

 t
0 |Xu(s)|pds

=


u∈NT (t)

V (u)
T (t)e−mβ

 t
0 |Xu(s)|pds

where ζ
(u)
T (t) and V (u)

T (t) are simply ζT (t) and VT (t) with the path Xu(s) replacing ξ(s), i.e.

V (u)
T (t) := eπ2t/(8ε2T 2q )+T q−1  t

0 f ′(s/T )dXu(s)− 1
2 T 2q−2  t

0 f ′(s/T )2dsCT (Xu(t), t).

We now proceed to show that the martingales ZT are close to
u∈N (t)

1{u is close to f }e
T 2q−2  t

0


1
2 f ′(s/T )2

−mβ| f (s/T )|p


ds (39)

(the exact meaning of “close” can be seen in Lemma 18 and the subsequent comment) and that
they have the properties that we discussed in Section 2.6 — specifically, we aim to show that for
certain f the martingales ZT are uniformly integrable and thus cannot be too small. This is the
key step to counting particles whose rescaled paths stay close to f .

We define new measures, Q̃T , via

Q̃T |F̃t
:= ζ̃T (t)P̃|F̃t
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for t ∈ [0, T ] — and note that

Q̃T |Ft = ZT (t)P̃|Ft and Q̃T |Gt = ζT (t)P̃|Gt .

Lemma 12. Under Q̃T the spine (ξt , t ∈ [0, T ]) moves as a Brownian motion with drift

T q−1 f ′(t/T ) −
π

2εT q tan
 π

2εT q (x − T q f (t/T ))


when at position x at time t; in particular,

|ξt − T q f (t/T )| ≤ εT q
∀t ≤ T .

Each particle u in the spine dies at an accelerated rate (m + 1)β|x |
p when in position x, to

be replaced by a random number Au + 1 of offspring where Au is taken from the size-biased
distribution relative to A, given by Q̃T (Au = k) = (m + 1)−1(k + 1)P(A = k) (note that this
distribution does not depend on T ). All non-spine particles, once born, behave exactly as they
would under P: they move like independent standard Brownian motions, die at the normal rate
β|x |

p, and give birth to a number of particles that is distributed like 1 + A.

Proof. A proof of this result can be found in [17]. We will not use the precise drift of the
spine except for the fact that it remains within the tube: to see this note that since the event is
GT -measurable,

Q̃T (∃t ≤ T : |ξt − T q f (t/T )| > εT q) = Ẽ[ζT (T )1{∃t≤T :|ξt −T q f (t/T )|>εT q }] = 0

by the definition of ζT (T ). �

Another important tool is the spine decomposition, which will allow us to bound the growth
of the martingales ZT via one-particle calculations in a more delicate way than is possible via
the many-to-one lemma. A proof of a more general version of the spine decomposition may be
found in [17].

Theorem 13 (Spine Decomposition). Q̃T -almost surely,

Q̃T [ZT (t)|G̃T ] =


u<ξt

Au VT (Su)e−mβ
 Su

0 |ξs |
pds

+ VT (t)e−mβ
 t

0 |ξs |
pds

where {u < ξt } is the set of ancestors of the spine particle at time t, and Su denotes the time at
which particle u died and split into 1 + Au new particles.

As we have already mentioned, the main aim of introducing these martingales is to give us
a lower bound on the number of particles in NT (t). To do this we must bound the size of each
of the terms in the sum. The following lemma is a simple bound for the Girsanov part of the
martingale, using integration by parts.

Lemma 14. If f ∈ C2
[0, 1] and f (0) = 0 then for any u ∈ NT (t), almost surely under both P̃

and Q̃T we haveT q−1
 t

0
f ′(s/T )dXu(s) − T 2q−2

 t

0
f ′(s/T )2ds


≤ 2εT 2q−2

 t

0
| f ′′(s/T )|ds + εT 2q−1

| f ′(0)|.
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Proof. From the integration by parts formula for Itô calculus (since for any particle u ∈

N (t), (Xu(s), 0 ≤ s ≤ t) is a Brownian motion under P̃) we know that for any g ∈ C2
[0, 1],

under P̃,

g′(t)Xu(t) =

 t

0
g′′(s)Xu(s)ds +

 t

0
g′(s)dXu(s).

From ordinary integration by parts, if g(0) = 0, t

0
g′(s)2ds = g′(t)g(t) −

 t

0
g(s)g′′(s)ds.

Now set g(t) = T q f (t/T ) for t ∈ [0, T ]. We note that if u ∈ NT (t) then |Xu(s) − g(s)| < εT q

for all s ≤ t . ThusT q−1
 t

0
f ′(s/T )dXu(s) − T 2q−2

 t

0
f ′(s/T )2ds


=

 t

0
g′(s)dXu(s) −

 t

0
g′(s)2ds


≤

g′(t)(Xu(t) − g(t)) −

 t

0
g′′(s)(Xu(s) − g(s))ds


≤ |g′(t) − g′(0)| × |Xu(t) − g(t)| + |g′(0)| × |Xu(t) − g(t)|

+

 t

0
|g′′(s)| × |Xu(s) − g(s)|ds

≤ 2εT q
 t

0
|g′′(s)|ds + εT q

|g′(0)|

= 2εT 2q−2
 t

0
| f ′′(s/T )|ds + εT 2q−1

| f ′(0)|

almost surely under P̃ and, since Q̃T ≪ P̃ (on F̃T ), almost surely under Q̃T . �

The next lemma continues along the same theme, controlling the terms in ZT so that eventu-
ally we will be able to give a lower bound on ZT and then use this to give a lower bound on NT
by showing that ZT looks something like (39).

Lemma 15. For any u ∈ NT (t),

T 2q−2 inf
g∈B( f,ε)

 t

0
|g(s/T )|pds ≤

 t

0
|Xu(s)|pds ≤ T 2q−2 sup

g∈B( f,ε)

 t

0
|g(s/T )|pds.

Proof. This follows immediately from the fact that if u ∈ NT (t) then (by definition) there exists
g ∈ B( f, ε) such that Xu(s) = T q g(s/T ) for all s ≤ t . �

We are now ready to start putting together the bounds that we have given. Combining Lem-
mas 14 and 15 with the spine decomposition we obtain the following.

Lemma 16. If f ∈ C2
[0, 1], f (0) = 0, f ′(0) = 0 and mβ

 φ

0 | f (s)|pds > 1
2

 φ

0 f ′(s)2ds for
all φ ∈ (0, θ], then for small enough ε > 0 and any T > 0 and t ≤ θT , there exists η > 0 such
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that

Q̃T [ZT (t)|G̃T ] ≤


u<ξt

Aueπ2/(8ε2T 2q−1)−ηmβ
 Su

0 |ξs |
pds

+ eπ2/(8ε2T 2q−1)−ηmβ
 t

0 |ξs |
pds

Q̃T -almost surely.

Proof. Recall that under Q̃T the spine is in NT (t) for all t ≤ T . Thus by Lemmas 14 and 15,
since f ′(0) = 0, for any η ∈ (0, 1),

−mβ

 t

0
|ξs |

pds + T q−1
 t

0
f ′(s/T )dξs −

1
2

T 2q−2
 t

0
f ′(s/T )2ds

≤ −ηmβ

 t

0
|ξs |

pds − (1 − η)mβT 2q−2 inf
g∈B( f,ε)

 t

0
|g(s/T )|pds

+
1
2

T 2q−2
 t

0
f ′(s/T )2ds + 2εT 2q−2

 t

0
| f ′′(s/T )|ds

for all t ≤ T . Then, since mβ
 φ

0 | f (s)|pds > 1
2

 φ

0 f ′(s)2ds for all φ ∈ (0, θ], we may choose
ε > 0 and η > 0 small enough such that

−(1 − η)mβT 2q−2 inf
g∈B( f,ε)

 t

0
|g(s/T )|pds

+
1
2

T 2q−2
 t

0
f ′(s/T )2ds + 2εT 2q−2

 t

0
| f ′′(s/T )|ds ≤ 0

for all t ∈ [0, θT ]. Plugging this into the spine decomposition, we get

Q̃T [ZT (t)|G̃T ] ≤


u<ξt

Aueπ2/8ε2T 2q−1
−ηmβ

 Su
0 |ξs |

pds
+ eπ2/8ε2T 2q−1

−ηmβ
 t

0 |ξs |
pds . �

We are in a position now to complete one of our two initial aims, which was to show that the
martingales ZT are uniformly integrable. This will be used in Section 5.1 to show that ZT cannot
be too small.

Proposition 17. Take f ∈ C2
[0, 1] and θ ∈ [0, 1]. If f (0) = 0, f ′(0) = 0, and mβ

 φ

0 | f (s)|p

ds > 1
2

 φ

0 f ′(s)2ds for all φ ∈ (0, θ], then for small enough ε > 0 the set {ZT (t) : T ≥ 1, t ≤

θT } is uniformly integrable under P.

Proof. Fix δ > 0. We first claim that there exists K such that

sup
T ≥1
t≤θT

Q̃T (Q̃T [ZT (t)|G̃T ] > K ) < δ/2.

To see this, take an auxiliary probability space with probability measure Q, and on this space
consider a sequence A1, A2, . . . of random variables with the same (size-biased) distribution as
A under Q̃T (there is no dependence on T ) and a sequence e1, e2, . . . of random variables that
are exponentially distributed with parameter β(m + 1); then set Sn = e1 + · · · + en (so that
the random variable Sn has the same distribution as

 Su
0 |ξs |

pds, where Su is the time of the nth
splitting event along the spine under Q̃T ). By Lemma 16 we have (since 2q − 1 ≥ 1)

sup
T ≥1

t∈[1,θT ]

Q̃T (Q̃T [ZT (t)|G̃T ] > K ) ≤ Q


∞
j=1

A j e
π2/8ε2

−ηS j + eπ2/8ε2
> K


.
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Hence our claim holds if the random variable
∞
j=1

A j e
−ηS j

can be shown to be Q-almost surely finite. Now for any γ ∈ (0, 1),

Q


n

Ane−ηSn = ∞


≤ Q(Ane−ηSn > γ n infinitely often)

≤ Q


log An

n
> log γ +

ηSn

n
infinitely often


.

By the strong law of large numbers, Sn/n → 1/β(m + 1) almost surely under Q; so if
γ ∈ (exp(−η/β(m + 1)), 1) then the quantity above is no larger than

Q


lim sup

n→∞

log An

n
> 0


.

But this quantity is zero by Borel–Cantelli: for any T ,
n

Q


log An

n
> ε


=


n

Q̃T (log A > εn)

≤


∞

0
Q̃T (log A ≥ εx)dx

= Q̃T


log A

ε


,

which is finite for any ε > 0 since (by direct calculation from the distribution of A under Q̃T
given in Lemma 12) Q̃T [log A] = P̃[A log A] < ∞. Thus our claim holds.

Now choose M > 0 such that 1/M < δ/2; then for K chosen as above, and any T ≥ 1, t ≤

θT ,

Q̃T (ZT (t) > M K ) ≤ Q̃T (ZT (t) > M K , Q̃T [ZT (t)|G̃T ] ≤ K )

+ Q̃T (Q̃T [ZT (t)|G̃T ] > K )

≤ Q̃T


ZT (t)

M K
1

{Q̃T [ZT (t)|G̃T ]≤K }


+ δ/2

= Q̃T


Q̃T [ZT (t)|G̃T ]

M K
1

{Q̃T [ZT (t)|G̃T ]≤K }


+ δ/2

≤ 1/M + δ/2 ≤ δ.

Thus, setting K ′
= M K , for any T ≥ 1, t ≤ θT ,

P[ZT (t)1{ZT (t)>K ′}] = Q̃T (ZT (t) > K ′) ≤ δ.

Since δ > 0 was arbitrary, the proof is complete. �

Finally we show that ZT is close to (39).

Lemma 18. For any δ > 0, if f ∈ C2
[0, 1], f (0) = 0 and ε is small enough then

ZT (θT ) ≤ |NT ( f, ε, θ)|e
π2θ

8ε2T 2q −mβT 2q−1  θ
0 | f (σ )|pdσ+

1
2 T 2q−1  θ

0 f ′(σ )2dσ+δT 2q−1

.
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Proof. Simply plugging the results of Lemmas 14 and 15 into the definition of ZT (θT ) gives the
desired inequality. �

We note here that, in fact, a similar bound can easily be given in the opposite direction, so
that |NT ( f, ε/2, θ)| is dominated by Z T (θT ) multiplied by some deterministic function of T .
We will not need this bound, but it is interesting to note that the study of the martingales ZT is
in a sense equivalent to the study of the number of particles NT .

4. Proof of Theorem 2

We first rule out the possibility of any particles following unusual paths, which allows us to
restrict our attention to compact sets, and hence small balls about sensible paths. In this section
we go back to our original notation convention in which small letters such as s and t as well
as θ are used for scaled time parameters varying in [0, 1] and capital letters are reserved for the
non-scaled time.

Lemma 19. Fix θ ∈ [0, 1]. For N ∈ N, define FN ⊂ C[0, 1] to be

FN :=


f : ∃n ≥ N , s, t ∈ [0, θ] with |t − s| ≤

1

n2 , | f (t) − f (s)| >
1

√
n


.

For any η > 0 we may choose N ∈ N such that for all large T

P(NT (FN , θ) ≠ ∅) ≤ E[NT (FN , θ)] ≤ exp(−ηT 2q−1)

and

lim sup
T →∞

1

T 2q−1 log |NT (FN , θ)| = −∞

almost surely.

Proof. Fix T ≥ S ≥ 0; then for any U ∈ [S, T ],

{ξU ∈ NU (FN , θ)} =


∃n ≥ N , s, t ∈ [0, θ] : |t − s| ≤

1

n2 ,

ξsU − ξtU

U q

 >
1

√
n


⊂


∃n ≥ N , s, t ∈ [0, θ] : |t − s| ≤

1

n2 ,

ξsT − ξtT

Sq

 >
1

√
n


.

Since the right-hand side does not depend on U , we deduce that

{∃U ∈ [S, T ] : ξU ∈ NU (FN , θ)}

⊂


∃n ≥ N , s, t ∈ [0, θ] : |t − s| ≤

1

n2 ,

ξsT − ξtT

Sq

 >
1

√
n


.

Now, for s ∈ [0, θ], define π(n, s) := ⌊2n2s⌋/(2n2). Suppose we have a continuous function f
such that sups∈[0,θ ] | f (s) − f (π(n, s))| ≤ 1/(4

√
n). If s, t ∈ [0, θ] satisfy |t − s| ≤ 1/n2, then

| f (t) − f (s)| ≤ | f (t) − f (π(n, t))| + | f (s) − f (π(n, s))| + | f (π(n, s)) − f (π(n, t))|

≤
1

4
√

n
+

1

4
√

n
+

2

4
√

n
=

1
√

n
.

Thus

{∃U ∈ [S, T ] : ξU ∈ NU (FN , θ)} ⊂


∃n ≥ N , s ≤ θ :

ξsT − ξπ(n,s)T

Sq

 >
1

4
√

n


.
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Standard properties of Brownian motion now give us that

P(∃U ∈ [S, T ] : ξU ∈ NU (FN , θ)) ≤ P

∃n ≥ N , s ≤ θ : |ξsT − ξπ(n,s)T | > Sq/4

√
n


≤


n≥N

2n2P


sup

s∈[0,1/(2n2)]

|ξsT | > Sq/4
√

n



≤


n≥N

8
√

n3T

Sq
√

π
exp


−

S2qn

16T


. (40)

Taking S = j and T = j + 1, we note that for large N ,


n≥N

8
√

n3T

S
√

π
exp


−

S2qn

16T


≤


n≥N

exp


−
j2q−1n

32


. (41)

Now, for any M > 0,

P


sup

T ∈[ j, j+1]

|NT (FN , θ)| ≥ 1


≤ E


sup

T ∈[ j, j+1]

|NT (FN , θ)|



≤ E

 
u∈N ( j+1)

1{∃T ∈[ j, j+1]:u∈NT (FN ,θ)}



= E

emβ

 j+1
0 |ξs |

pds1{∃T ∈[ j, j+1]:ξT ∈NT (FN ,θ)}


≤ E


emβ

 j+1
0 |ξs |

pds1{∃T ∈[ j, j+1]:ξT ∈Nt (FN ,θ)}1{ sup
S≤ j+1

|ξS |≤M( j+1)q }


+ E


emβ

 j+1
0 |ξs |

pds1{ sup
S≤ j+1

|ξS |>M( j+1)q }


≤ emβM p( j+1)pq+1

P(∃T ∈ [ j, j + 1] : ξT ∈ NT (FN , θ))

+


k≥1

E


emβ
 j+1

0 |ξs |
pds1{ sup

S≤ j+1
|ξT |∈[k M( j+1)q ,(k+1)M( j+1)q ]}


≤ emβM p( j+1)pq+1

P(∃T ∈ [ j, j + 1] : ξT ∈ NT (FN , θ))

+


k≥1

emβ( j+1)2q−1(k+1)p M p
P( sup

S≤ j+1
|ξS| ∈ [k M( j + 1)q , (k + 1)M( j + 1)q

])

≤ emβM p( j+1)pq+1
P(∃T ∈ [ j, j + 1] : ξT ∈ NT (FN , θ))

+ 4

k≥1

1
√

2π( j + 1)
emβ( j+1)2q−1(k+1)p M p

−k2 M2( j+1)2q−1/2.

Both of the terms in the right-hand side can be made exponentially small in j by choosing M ,
and then N , sufficiently large (for the first term, see (40) and (41)). This establishes the first part
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of the lemma, and by Borel–Cantelli we have that for large enough N

P(lim sup
j→∞

sup
T ∈[ j, j+1]

|NT (FN , θ)| ≥ 1) = 0

and since |NT (FN , θ)| is integer-valued,

lim sup
T →∞

1

T 2q−1 log |NT (FN , θ)| = −∞

almost surely. �

We now check that we can cover our sets in a suitable way.

Lemma 20. Let

C0[0, 1] := { f ∈ C[0, 1] : f (0) = 0}.

For each N ∈ N, the set C0[0, 1] \ FN is totally bounded under ∥ · ∥∞ (that is, it may be covered
by finitely many open balls of arbitrarily small radius).

Proof. Given ε > 0, choose n such that n ≥ N ∨ 1/ε2. For any f ∈ C0[0, 1] \ FN , if |u − s| <

1/n2 then | f (u) − f (s)| ≤ 1/
√

n ≤ ε. Thus C0[0, θ] \ FN is equicontinuous (and, since each
function must start from 0, uniformly bounded) and we may apply the Arzelà–Ascoli theorem
to say that C0[0, 1] \ FN is relatively compact, which is equivalent to totally bounded since
(C[0, 1], ∥ · ∥∞) is a complete metric space. �

Lemma 21. For D ⊂ C0[0, 1] define

Dε
:= { f ∈ C0[0, 1] : ∃g ∈ D with ∥g − f ∥∞ ≤ ε}.

For any δ > 0 there exists ε > 0 such that

sup
f ∈Dε

K ( f, θ) ≤ sup
f ∈D

K ( f, θ) + δ.

Proof. For each θ, f →
 θ

0 f ′(s)2ds is a lower semicontinuous function on C0[0, θ]: we refer

to Section 5.2 of [9] but it is possible to give a direct proof. Thus f → mβ
 θ

0 | f (s)|pds −

1
2

 θ

0 f ′(s)2ds is upper semicontinuous. Now, by Jensen’s inequality, for any f ∈ C0[0, θ] ∩ H1
and any s, t ∈ [0, θ], s < t ,

1
t − s

 t

s
f ′(u)2du ≥


1

t − s

 t

s
f ′(u)du

2

=


f (t) − f (s)

t − s

2

so that

( f (t) − f (s))2
≤ (t − s)

 t

s
f ′(u)2du. (42)

There exists t ∈ [0, θ] such that | f (t)|p
≥

1
θ

 θ

0 | f (s)|pds, so by (42) (taking s = 0)

 θ

0
f ′(u)2du ≥

 t

0
f ′(u)2du ≥

 θ

0 | f (s)|pds
2/p

θ2/pt
≥

 θ

0
| f (s)|pds

2/p
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and hence
f ∈ C0[0, θ] : mβ

 θ

0
| f (s)|pds −

1
2

 θ

0
f ′(s)2ds ≥ K


⊂


f ∈ C0[0, θ] : mβ

 θ

0
f ′(s)2ds

p/2

−
1
2

 θ

0
f ′(s)2ds ≥ K



⊂


f ∈ C0[0, θ] :

 θ

0
f ′(s)2ds ≤ K ′


for some K ′ since p/2 < 1. But by (42),

f ∈ C0[0, θ] :

 θ

0
f ′(s)2ds ≤ K ′


⊂


f ∈ C0[0, θ] : ∀s, t ∈ [0, θ], | f (s) − f (t)| ≤


(t − s)K ′


and the Arzelà–Ascoli theorem tells us that this latter set is totally bounded. Thus the set

f ∈ C0[0, θ] : mβ

 θ

0
| f (s)|pds −

1
2

 θ

0
f ′(s)2ds ≥ sup

f ∈D
K ( f, θ) + δ


is totally bounded, but by upper-semicontinuity it is closed, and hence compact. Since it is
disjoint from the closed set

{ f ∈ C0[0, θ] : ∃g ∈ D with f (s) = g(s) ∀s ∈ [0, θ]},

there is a positive distance between the two sets. �

Before continuing, we need the following lemma.

Lemma 22. If f ∉ FN and g1, g2 ∈ B( f, ε), then θ

0
|g2(s)|

pds − RN (ε) ≤

 θ

0
|g1(s)|

pds ≤

 θ

0
|g2(s)|

pds + RN (ε)

for all p ∈ [0, 2), where

RN (ε) :=


0 if p = 0

2


N 2
+ 1

√
N

+ 2ε

p/2

(2ε)p/2
+ (2ε)p if p > 0;

Proof. If p = 0 the claim is trivial. Now note that for any x, y ∈ R and p ∈ [0, 2),

|x + y|
p

≤ |x |
p

+ |y|
p

+ 2|x |
p/2

|y|
p/2.

This result is entirely elementary; see [30] for a proof. Note also that since f ∉ FN ,

sup
s∈[0,θ ]

| f (s)| ≤ (N 2
+ 1)/

√
N

(split [0, θ] into N 2
+ 1 intervals of equal width; then f changes by at most 1/

√
N on each

interval). Thus
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0
|g1(s)|

pds ≤

 θ

0
(|g2(s)| + 2ε)pds

≤

 θ

0
|g2(s)|

pds + 2
 θ

0
|g2(s)|

p/2(2ε)p/2ds +

 θ

0
(2ε)pds

≤

 θ

0
|g2(s)|

pds + 2


N 2
+ 1

√
N

+ 2ε

p/2

(2ε)p/2
+ (2ε)p.

The other bound follows by symmetry. �

Proposition 23. If f ∉ FN , then for A = B( f, ε), we have

lim sup
T →∞

1

T 2q−1 log E

|NT ( Ā, θ)|


≤ sup

g∈ Ā
K (g, θ) + mβ RN (ε)

and

lim inf
T →∞

1

T 2q−1 log E

|NT (A, θ)|


≥ sup

g∈A
K (g, θ) − mβ RN (ε)

as T → ∞, where RN (ε) is as in Lemma 22. In particular RN is a deterministic function of ε

such that for each N , RN (ε) → 0 as ε → 0.

Proof. From Schilder’s theorem (Theorem 5.1 of [33]) we have

lim sup
T →∞

1

T 2q−1 log P(ξT ∈ NT ( Ā, θ)) ≤ − inf
f ∈ Ā∩H1

1
2

 θ

0
f ′(s)2ds.

Thus, by the many-to-one lemma,

lim sup
T →∞

1

T 2q−1 log E

|NT ( Ā, θ)|


≤ lim sup

T →∞

1

T 2q−1 log E

emβ

 θT
0 |ξs |

pds1
{ξT ∈NT ( Ā,θ)}


≤ sup

g∈ Ā
mβ

 θ

0
|g(s)|pds − inf

g∈ Ā∩H1

1
2

 θ

0
g′(s)2ds.

Now fix δ > 0 and choose h ∈ Ā ∩ H1 such that θ

0
h′(s)2ds ≤ inf

g∈ Ā∩H1

 θ

0
g′(s)2ds + δ.

By Lemma 22,

sup
g∈ Ā

mβ

 θ

0
|g(s)|pds − inf

g∈ Ā∩H1

1
2

 θ

0
g′(s)2ds

≤ mβ

 θ

0
|h(s)|pds + mβ RN (ε) −

1
2

 θ

0
h′(s)2ds + δ

≤ sup
g∈ Ā

K (g, θ) + mβ RN (ε) + δ.

Since δ > 0 was arbitrary, this gives us the desired upper bound. The lower bound is similar: by
Schilder’s theorem and the many-to-one lemma,

lim inf
T →∞

1

T 2q−1 log E

|NT (A, θ)|


≥ inf

g∈A
mβ

 θ

0
|g(s)|pds − inf

g∈A∩H1

1
2

 θ

0
g′(s)2ds.
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By Lemma 22,

lim inf
T →∞

1

T 2q−1 log E

|NT (A, θ)|


≥ sup

g∈A
mβ

 θ

0
|g(s)|pds − mβ RN (ε)

− inf
g∈A∩H1

1
2

 θ

0
g′(s)2ds

≥ sup
g∈A∩H1

K (g, θ) − mβ RN (ε)

as required. �

Proof of Theorem 2. We start with the lower bound. Given an open set A, fix δ > 0 and choose
g ∈ A such that

|K (g, t) − sup
f ∈A

K ( f, t)| < δ/2.

Now choose N ∈ N such that g ∉ FN (this is possible since


N FN = ∅) and then ε > 0 such
that B(g, ε) ⊆ A and RN (ε) < δ/2. Then by Proposition 23,

lim inf
T →∞

T 1−2q log E[|NT (A, θ)|] ≥ lim inf
T →∞

T 1−2q log E[|NT (B(g, ε), θ)|]

≥ K (g, θ) − mβ RN (ε)

≥ sup
f ∈A

K ( f, θ) − δ.

Since δ > 0 was arbitrary, our lower bound follows.
We now proceed with the upper bound. Take a closed set D and θ ∈ [0, 1], and again fix

δ > 0. By Lemma 19 we may first choose N ∈ N such that

E[NT (FN , θ)] ≤ exp


T 2q−1( sup

f ∈D
K ( f, θ) − 1)


for all large T . Let DN = D \ FN . By Lemma 21 we may choose ε > 0 such that

sup
f ∈Dε

N

K ( f, θ) + mβ RN (ε) ≤ sup
f ∈DN

K ( f, θ) + δ.

Then by Lemma 20 we may choose n and f1, . . . , fn such that

DN ⊂

n
i=1

B( fi , ε) ⊂ Dε
N .

But now by Proposition 23 we have

lim sup
T →∞

1

T 2q−1 log E[|NT (D, θ)|]

≤ lim sup
T →∞

1

T 2q−1 log


E[|NT (FN , θ)|] +

n
i=1

E[|NT (B( fi , ε), θ)|]


≤ sup

f ∈Dε

K ( f, θ) + mβ RN (ε)

≤ sup
f ∈D

K ( f, θ) + δ
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where the last inequality is due to our choice of N and ϵ. Since δ > 0 was arbitrary, the upper
bound follows and the proof is complete. �

Proof of Corollary 3. Observe that if we take D = { f ∈ C[0, 1] : f (1) ∈ [a, b]} and A =

{ f ∈ C[0, 1] : f (1) ∈ (a, b)} (D is closed and A open) then necessarily sup f ∈D K ( f, t) =

sup f ∈A K ( f, t). To see this observe that for any f such that, say, f (1) = a one can find a
sequence fn → f in A such that K ( fn, 1) → K ( f, 1) (just modify f near time 1 to finish ever
so slightly above a). �

5. Proof of Theorem 5

5.1. The heuristic for the lower bound in Theorem 5

We want to show that NT ( f, ε, θ) cannot be too small for large T . Recall that for f ∈ C[0, 1]

and θ ∈ [0, 1], we defined

K ( f, θ) :=

mβ

 θ

0
| f (s)|pds −

1
2

 θ

0
f ′(s)2ds if f ∈ H1

−∞ otherwise.

which is the growth rate in expectation. We are going to show that the almost sure behaviour is
described by a rate function which differs by the presence of a truncation at the extinction time θ0.

Step 1. Consider a small rescaled time η. How many particles are in NT ( f, ε, η)? If η is much
smaller than ε, then (with high probability) no particle has had enough time to reach anywhere
near the edge of the tube (approximately distance εT from the origin) before time ηT . Thus, with
high probability,

|NT ( f, ε, η)| = |N (ηT )|.

We can then give a very simple (and inaccurate!) estimate to show that for some ν > 0, with high
probability,

|N (ηT )| ≥ νT .

Step 2. Given their positions at time ηT , the particles in NT ( f, ε, η) act independently. Each
particle u in this set thus draws an independent branching Brownian motion. Let NT (u, f, ε, θ)

be the set of descendants of u that are in NT ( f, ε, θ). How big is this set? Since η is very small,
u is close to the origin at time ηT . Thus we may hope, for a given δ > 0, to find some γ < 1
such that (for each u)

P

|NT (u, f, ε, θ)| < exp(K ( f, θ)T 2q−1

− δT 2q−1)


≤ γ.

Step 3. If NT ( f, ε, θ) is to be small, then each of the sets NT (u, f, ε, θ) for u ∈ NT ( f, ε, η) must
be small. Thus

P

|NT ( f, ε, θ)| < exp(K ( f, θ)T 2q−1

− δT 2q−1)


≤ γ νT ,

and we may apply Borel–Cantelli to deduce our result along lattice times (that is, times T j , j ≥ 0
such that there exists τ > 0 with T j − T j−1 = τ for all j ≥ 1).

Step 4. We carry out a simple tube-reduction argument to move to continuous time. The idea here
is that if the results were true on lattice times but not in continuous time, the number of particles
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in NT ( f, ε, θ) must fall dramatically at infinitely many non-lattice times. We simply rule out this
possibility using standard properties of Brownian motion.

The most difficult part of the proof is step 2. However, the spine results of Section 3 will
simplify our task significantly.

5.2. The proof of the lower bound in Theorem 5

We begin with step 1 of our heuristic, considering the size of NT ( f, ε, η) for small η. First we
will need the following simple lemma.

Lemma 24. For any t, δ > 0 and k > 0,

P̃
 t

0
1{ξs∈(−δ,δ)}ds > k


≤ 3et/2−k/(4δ).

Proof. Defining hδ : R → R by

hδ(x) :=

|x | if |x | ≥ δ

δ

2
+

x2

2δ
if |x | < δ

we have, by approximating with C2 functions and applying Itô’s formula, that

hδ(ξt ) =
δ

2
+

 t

0
h′

δ(ξs)dξs +
1
2δ

 t

0
1{ξs∈(−δ,δ)}ds

(this function hδ is often seen when studying local times of Brownian motion — for a full proof
of the above see, for example, Lemma 4.11 of [30]). Also, since h′

δ(x)2
≤ 1 for all x ,

P̃[e−
 t

0 h′
δ(ξs )dξs ] ≤ P̃[e−

 t
0 h′

δ(ξs )dξs−
1
2

 t
0 h′

δ(ξs )
2ds

]et/2
≤ et/2.

Note also that hδ(x) −
δ
2 ≤ |x | for all x . Using all these facts,

P̃
 t

0
1{ξs∈(−δ,δ)}ds > k


= P̃


hδ(ξt ) −

δ

2
−

 t

0
h′

δ(ξs)dξs >
k

2δ


≤ P̃


|ξt | −

 t

0
h′

δ(ξs)dξs >
k

2δ


≤ P̃


|ξt | >

k

4δ


+ P̃


−

 t

0
h′

δ(ξs)dξs >
k

4δ


≤ P̃


e|ξt |


e−k/(4δ)

+ P̃

e−

 t
0 h′

δ(ξs )dξs


e−k/(4δ)

≤ 3et/2−k/(4δ),

establishing the result. �

Lemma 25. For any continuous f with f (0) = 0 and any ε > 0, there exist η > 0, ν > 0, k > 0
and T1 such that for all T ≥ T1,

P(|NT ( f, ε/2, η)| < νT ) ≤ e−kT .
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Proof. We first show that there exist η > 0, k1 > 0 and T1 such that

P(∃u ∈ N (ηT ) : u ∉ NT ( f, ε/2, η)) ≤ e−k1T
∀T ≥ T1.

Choose η small enough that sups∈[0,η] | f (s)| < ε/4. Then, using the many-to-one lemma (at (⋆))
and standard properties of Brownian motion,

P(∃u ∈ N (ηT ) : u ∉ NT ( f, ε/2, η))

= P(∃u ∈ N (ηT ), s ≤ η : |Xu(sT ) − T q f (s)| ≥ εT q/2)

≤ P(∃u ∈ N (ηT ) : sup
s≤ηT

|Xu(s)| ≥ εT q/4)

≤


k≥1

P(∃u ∈ N (ηT ) : sup
s≤ηT

|Xu(s)| ∈ [kεT q/4, (k + 1)εT q/4])

≤


k≥1

emβ
 ηT

0 ((k+1)εT q )pdsP( sup
s≤ηT

|ξs | ∈ [kεT q/4, (k + 1)εT q/4])

≤


k≥1

4emβ(k+1)pε pηT qp+1
P(ξηT ∈ [kεT q/4, (k + 1)εT q/4])

≤


k≥1

4
√

2πηT
exp


mβ(k + 1)pε pηT qp+1

−
(kεT q)2

32ηT



≤


k≥1

4
√

2πηT
exp


(mβε pη − ε2/(32η))kT 2q−1


(⋆)

for sufficiently small η. For small η this is approximately

C exp

(mβε pη − ε2/(32η))T 2q−1


,

which gives a decay of exp(−k1T 2q−1), which is more than the decay required. We now aim to
show that for any η > 0, there exist ν > 0 and k2 > 0 such that

P(N (ηT ) < νT ) ≤ e−k2T .

Indeed, if we let n(t) be the number of births along the spine by time t , then certainly

P(N (ηT ) < νT ) ≤ P(n(ηT ) < νT )

≤ P
 ηT

0
1{ξs∈[−(4ν/(βη))1/p,(4ν/(βη))1/p]}ds ≥

1
2
ηT


+ P

 ηT

0
1{ξs∈[−(4ν/(βη))1/p,(4ν/(βη))1/p]}ds <

1
2
ηT, n(ηT ) < νT


.

Lemma 24 shows that

P
 ηT

0
1{ξs∈[−(4ν/(βη))1/p,(4ν/(βη))1/p]}ds ≥

1
2
ηT


≤ 3 exp


ηT

2
−

ηT

8(4ν/(βη))1/p


so we have exponential decay in the first term provided that ν < βη/4p+1; and since births along
the spine occur at rate at least 4ν/η outside the interval

[−(4ν/(βη))1/p, (4ν/(βη))1/p
]
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the second term is bounded above by the probability that a Poisson random variable with mean
2νT is less than νT . Let Y ∼ Po(2νT ); then

1Y≤νT = 1exp(νT )≥exp(Y ) ≤
eνT

eY

so

P(Y ≤ νT ) ≤ eνT E[e−Y
] = eνT +2νT (exp(−1)−1)

and this exponent is negative, so the second term also decays exponentially. Finally,

P(|NT ( f, ε/2, η)| < νT ) ≤ P(∃u ∈ N (ηT ) : u ∉ NT ( f, ε/2, η)) + P(N (ηT ) < νT )

and the proof is complete. �

We now move on to step 2, using the results of Section 3 to bound the probability that we
have a small number of particles strictly below 1. The bound given is extremely crude, and there
is much room for manoeuvre in the proof, but any improvement would only add unnecessary
detail. The proof of this lemma runs exactly as for the corresponding result in the p = 0 case
seen in [21], with no extra technicalities; we include it again here for completeness.

Lemma 26. If f ∈ C2
[0, 1], with f (0) = 0, and K ( f, s) > 0 ∀s ∈ (0, θ], then for any ε > 0

and δ > 0 there exist T0 ≥ 0 and γ < 1 such that

P

|NT ( f, ε, θ)| < eK ( f,θ)T 2q−1

−δT 2q−1


≤ γ ∀T ≥ T0.

Proof. Note that by Lemma 18 for small enough ε > 0 and large enough T ,

|NT ( f, ε, θ)|e−K ( f,θ)T 2q−1
+δT 2q−1/2

≥ ZT (θT )

and hence

P

|NT ( f, ε, θ)| < eK ( f,θ)T 2q−1

−δT 2q−1


≤ P


ZT (θT ) < e−δT 2q−1/2


.

Suppose first that f ′(0) = 0. Then E[ZT (θT )] = 1 and, again for small enough ε, by Proposi-
tion 17 the set {ZT (t), T ≥ 1, t ∈ [1, θT ]} is uniformly integrable. Thus we may choose K such
that

sup
T ≥1

E[ZT (θT )1{ZT (θT )>K }] ≤ 1/4,

and then

1 = E[ZT (θT )]

= E[ZT (θT )1{ZT (θT )≤1/2}] + E[ZT (θT )1{1/2<ZT (θT )≤K }]

+ E[ZT (θT )1{ZT (θT )>K }]

≤ 1/2 + KP(ZT (θT ) > 1/2) + 1/4

so that

P(ZT (θT ) > 1/2) ≥ 1/(4K ).

Hence for large enough T ,

P

|NT ( f, ε, θ)| < eK ( f,θ)T 2q−1

−δT 2q−1


≤ 1 − 1/(4K ).
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This is true for all small ε > 0; but increasing ε only increases |NT ( f, ε, θ)| so the statement
holds for all ε > 0. Finally, if f ′(0) ≠ 0 then choose g ∈ C2

[0, θ] such that g(0) = g′(0) =

0, sups≤θ | f − g| ≤ ε/2, K (g, φ) > 0 ∀φ ≤ θ and K (g, θ) > K ( f, θ) − δ/2 (for small η, the
function

g(t) :=


f (t) + at + bt2

+ ct3
+ dt4 if t ∈ [0, η)

f (t) if t ∈ [η, 1]

will work for suitable a, b, c, d ∈ R). Then

P(|NT ( f, ε, θ)| < eK ( f,θ)T 2q−1
−δT 2q−1

) ≤ P(|NT (g, ε/2, θ)| < eK (g,θ)T 2q−1
−δT 2q−1/2)

≤ 1 − 1/(4K )

as required. �

We are now ready to carry out step 3 of the heuristic. Again this runs exactly as in [21].

Proposition 27. Suppose that f ∈ C2
[0, 1] and K ( f, s) > 0 ∀s ∈ (0, θ]. Then for lattice times

T j (recall that this means that there exists τ > 0 such that T j − T j−1 = jτ for all j ≥ 1),

lim inf
j→∞

1

T 2q−1
j

log |NT j ( f, ε, θ)| ≥ K ( f, θ)

almost surely.

Proof. For a particle u, recall that u < v means that u is an ancestor of v and define

NT (u, f, ε, θ) := {v ∈ N (θT ) : u < v, |Xv(tT ) − T q f (t)| < εT q
∀t ∈ [0, θ]},

the set of descendants of u that are in NT ( f, ε, θ). Then for δ > 0 and η ∈ [0, θ],

P

|NT ( f, ε, θ)| < eK ( f,θ)T 2q−1

−δT 2q−1
FηT


≤


u∈NT ( f,ε/2,η)

P

|NT (u, f, ε, θ)| < eK ( f,θ)T 2q−1

−δT 2q−1
FηT


≤


u∈NT ( f,ε/2,η)

P

|NT (g, ε/2, θ − η)| < eK ( f,θ)T 2q−1

−δT 2q−1


since, given FηT , {|NT (u, f, ε, θ)| : u ∈ NT ( f, ε/2, η)} are independent random variables, and
where g : [0, 1] → R is any twice continuously differentiable extension of the function

g : [0, θ − η] → R
t → f (t + η) − f (η).

If η is small enough, then

|K ( f, θ) − K (g, θ − η)| < δ/2

and

K (g, s) > 0 ∀s ∈ (0, θ − η].
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Hence, applying Lemma 26, there exists γ < 1 such that for all large T ,

P

|NT (g, ε/2, θ − η)| < eK ( f,θ)T 2q−1

−δT 2q−1


≤ P

|NT (g, ε/2, θ − η)| < eK (g,θ−η)T 2q−1

−δT 2q−1/2


≤ γ.

Thus for large T ,

P

|NT ( f, ε, θ)| < eK ( f,θ)T 2q−1

−δT 2q−1
FηT


≤ γ |NT ( f,ε/2,η)|. (43)

Taking expectations in (43), and then applying Lemma 25, for small η and some ν, k > 0, for
large T we have

P

|NT ( f, ε, θ)| < eK ( f,θ)T 2q−1

−δT 2q−1


≤ P (|NT ( f, ε/2, η)| < νT ) + γ νT

≤ e−kT
+ γ νT .

The Borel–Cantelli lemma now tells us that for any lattice times T j , j ≥ 0,

P

lim inf
j→∞

1

T 2q−1
j

log |N j ( f, ε, θ)| < K ( f, θ) − δ

 = 0,

and taking a union over δ > 0 gives the result. �

We now move to continuous time using step 4 of our heuristic.

Proposition 28. Suppose that f ∈ C2
[0, 1] and K ( f, s) > 0 ∀s ∈ (0, θ]. Then

lim inf
T →∞

1

T 2q−1 log |NT ( f, ε, θ)| ≥ K ( f, θ)

almost surely.

Proof. We claim first that for large enough j ∈ N, provided that T1 ≤ 1,
|NT j ( f, ε, θ)| > inf

T ∈[T j ,T j+1]
|NT ( f, 2ε, θ)|


⊂


∃v ∈ NT j ( f, ε, θ), u ∈ N (θT j+1) : v < u,

sup
T ∈[T j ,T j+1]

|Xu(θT ) − Xu(θT j )| >
εT q

j

2


.

Indeed, if v ∈ NT j ( f, ε, θ), T ∈ [T j , T j+1] and S ∈ [0, θT ] then for any descendant u of v at
time θT ,

|Xu(S) − T q f (S/T )| ≤ |Xu(S) − Xu(S ∧ θT j )| +

Xu(S ∧ θT j ) − T q
j f


S ∧ θT j

T j


+

T q
j f


S ∧ θT j

T j


− T q

j f (S/T )

+ |T q
j f (S/T ) − T q f (S/T )|
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≤ |Xu(S) − Xu(S ∧ θT j )| + εT q
j + T q

j sup
x,y∈[0,θ ]

|x−y|≤1/T j

| f (x) − f (y)|

+ sup
x∈[0,θ ]

| f (x)||T q
j+1 − T q

j |

≤ |Xu(S) − Xu(S ∧ θT j )| +
3ε

2
T q

j for large j;

so that if any particle is in NT j ( f, ε, θ) but does not have a descendant in NT ( f, 2ε, θ) then its
descendants must satisfy

sup
S∈[θT j ,θT j+1]

|Xu(S) − Xu(T j )| ≥ εT q
j /2.

This is enough to establish the claim, and we deduce via the many-to-one lemma plus Lemma 15
and standard properties of Brownian motion (see Proposition 4.15 of [30] for a more detailed
justification) that

P


|NT j ( f, ε, θ)| > inf
T ∈[T j ,T j+1]

|NT ( f, 2ε, θ)|



≤ 4e
mβT 2q−1

j sup
g∈B( f,ε)

 θ
0 |g(s)|pds ∞

k=1

e−(kεT q
j )2/(8θT1)+mβT 2q−2

j (| f (θ)|+(k+3)ε/2)

which, as in Lemma 25, is exponentially small in T j . Thus the probabilities are summable and
we may apply Borel–Cantelli to see that

P(|NT j ( f, ε, θ)| > inf
T ∈[T j ,T j+1]

|NT ( f, 2ε, θ)| infinitely often) = 0.

Now,

P


lim inf
T →∞

1

T 2q−1 log |NT ( f, ε, θ)| < K ( f, θ)



≤ P

lim inf
j→∞

1

T 2q−1
j

log |NT j ( f, 2ε, θ)| < K ( f, θ)


+ P

lim inf
j→∞

inf
T ∈[T j ,T j+1]

|NT ( f, ε, θ)|

|NT j ( f, 2ε, θ)|
< 1


which is zero by Proposition 27 and the above. �

This gives us our desired lower bound for Theorem 5.

Corollary 29. For any open set A ⊂ C[0, 1] and θ ∈ [0, 1], we have

lim inf
T →∞

1

T 2q−1 log |NT (A, θ)| ≥ sup{K ( f, θ) : f ∈ A, θ0( f ) ≥ θ}

almost surely.

Proof. Clearly if sup{K ( f, θ) : f ∈ A, θ0( f ) ≥ θ} = −∞ then there is nothing to prove.
Thus it suffices to consider the case when there exists f ∈ A such that f ∈ H1 and θ ≤ θ0( f ).
Since A is open, in this case we can in fact find f ∈ A such that K ( f, s) > 0 ∀s ∈ (0, θ] (if
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K ( f, φ) = 0 for some φ ≤ θ , just choose η small enough that (1 − η) f ∈ A) and such that f
is twice continuously differentiable on [0, 1] (the twice continuously differentiable functions are
dense in C[0, 1]). Thus necessarily sup{K ( f, θ) : f ∈ A, θ0( f ) ≥ θ} > 0, and for any δ > 0
we may further assume that K ( f, θ) > sup{K ( f, θ) : f ∈ A, θ0( f ) ≥ θ} − δ. Again since A is
open, we may take ε such that B( f, ε) ⊂ A; then clearly for any T

NT ( f, ε, θ) ⊂ NT (A, θ)

so by Proposition 28 we have

lim inf
T →∞

1

T 2q−1 log NT (A, θ) ≥ sup{K ( f, θ) : f ∈ A, θ0( f ) ≥ θ} − δ

almost surely, and by taking a union over δ > 0 we may deduce the result. �

5.3. The upper bound in Theorem 5

Our plan is as follows: we recall that we ruled out the possibility of any particles following
unusual paths in Lemma 19, which allows us to restrict our attention to a compact set, and hence
small balls about sensible paths. We then carry out the task of obtaining a bound along lattice
times for balls about such paths in Proposition 30. By expanding these balls slightly (using an
argument similar to that in Proposition 28) we may then bound the growth in continuous time;
this is done in Lemma 31, and finally we draw this work together in Proposition 32 to give the
bound in continuous time for any closed set D.

For simplicity of notation, we break with convention by letting

∥ f ∥θ := sup
s∈[0,θ]

| f (s)|

for f ∈ C[0, θ] or f ∈ C[0, 1] (on this latter space, ∥ · ∥θ is clearly not a norm, but this will not
matter to us). We also extend the definition of NT (D, θ) to sets D ⊂ C[0, θ] in the obvious way,
setting

NT (D, θ) := {u ∈ N (θT ) : ∃ f ∈ D with Xu(tT ) = T q f (t) ∀t ∈ [0, θ]}.

With a slight abuse of notation, for D ⊂ C[0, 1] and θ ∈ [0, 1] we define

K (D, θ) := sup
f ∈D

K ( f, θ).

We now attempt to establish an upper bound along lattice times for closed balls about
functions outside FN . Recall the definition of FN from Lemma 19 and that of RN (ε) from
Proposition 23.

Proposition 30. Fix N ∈ N. For any closed ball D = B( f, ε) ⊂ C[0, 1] about any f ∉ FN ,
and any θ ∈ [0, 1] and lattice times T j , we have

lim sup
j→∞

1

T 2q−1
j

log |NT j (D, θ)| ≤ K (D, θ) + mβ RN (ε)

almost surely.

Proof. Proposition 23 tells us that

lim sup
T →∞

1

T 2q−1 log E

|NT (D, θ)|


≤ K (D, θ) + mβ RN (ε).
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Applying Markov’s inequality, for any δ > 0 and p ∈ [0, 2) we get

lim sup
T →∞

1

T 2q−1 log P

|NT (D, θ)| ≥ eK (D,θ)T 2q−1

+mβ RN (ε)T 2q−1
+δT 2q−1

≤ lim sup
T →∞

1

T 2q−1 log
E

|NT (D, θ)|


eK (D,θ)T 2q−1+mβ RN (ε)T 2q−1+δT 2q−1 ≤ −δ

so that for lattice times T1, T2, . . . we have
∞
j=1

P

|NT j (D, θ)| ≥ eK (D,θ)T 2q−1

j +mβ RN (ε)T 2q−1
j +δT 2q−1

j


< ∞

and hence by the Borel–Cantelli lemma

P

lim sup
j→∞

1

T 2q−1
j

log |NT j (D, θ)| ≥ K (D, θ) + mβ RN (ε) + δ

 = 0.

Taking a union over δ > 0 now gives the result. �

We now check that an upper bound holds in continuous time. For ε > 0 and D ⊂ C[0, 1],
define

Dε
:= { f ∈ C[0, 1] : ∃g ∈ D with ∥ f − g∥ ≤ ε}.

Lemma 31. If D = B( f, ε) ⊂ C[0, 1] for some f ∉ FN , then

lim sup
T →∞

1

T 2q−1 log |NT (D, θ)| ≤ K (Dε, θ) + mβ RN (2ε)

almost surely.

Proof. First note that for lattice times T1, T2, . . . ,

P


lim sup
T →∞

1

T 2q−1 log |NT (D, θ)| > K (Dε, θ) + mβ RN (2ε) + δ



≤ P

lim sup
j→∞

1

T 2q−1
j

log |NT j (Dε, θ)| > K (Dε, θ) + mβ RN (2ε)


+ P

lim sup
j→∞

1

T 2q−1
j

log sup
T ∈[T j ,T j+1]

|NT (D, θ)|

|NT j (Dε, θ)|
> δ

 .

Clearly Dε
= B( f, 2ε), so immediately by Proposition 30,

P

lim sup
j→∞

1

T 2q−1
j

log |NT j (Dε, θ)| > K (Dε, θ) + mβ RN (2ε)

 = 0

and we may concentrate on the last term. We claim that for j large enough, provided that T1 ≤ 1,
for any T ∈ [T j , T j+1] we have

u ∈ NT (D, θ) ⇒ ∃v < u with v ∈ NT j (Dε, θ).
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Indeed, if u ∈ NT (D, θ) then for any S ≤ θT j ,

|Xu(S) − T q
j f (S/T j )| ≤ |Xu(S) − T q f (S/T ) | + |T q

j f

S/T j


− T q f


S/T j


|

+ T q
| f

S/T j


− f (S/T ) |

≤ T qε + ∥ f ∥θ (T q
j+1 − T q

j ) + T q sup
x,y∈[0,θ ]

|x−y|≤1/T j

| f (x) − f (y)|

which is smaller than 2εT q
j for large j since f is absolutely continuous.

We deduce that for large j every particle in NT (D, θ) for any T ∈ [T j , T j+1] has an ancestor
in NT j (Dε, θ). We now use this fact to ensure that NT (D, θ) cannot increase dramatically
between times T j and T j+1.

We temporarily need some more notation. For T > S ≥ 0 and u ∈ N (S), let N (u, S, T ) be
the set of descendants of u born between times S and T . Also let P̃x be the translation of P̃ under
which we start with one particle at x rather than at the origin. Then, using the Markov property
and the many-to-one lemma, for j large enough,

E


sup

T ∈[T j ,T j+1]

|NT (D, θ)|

FθT j


≤ E

 
u∈NT j (Dε,θ)

|N (u, θT j , θT j+1)|

FθT j


≤


u∈NT j (Dε,θ)

EXu(θT j ) [|N (θT1)|]

=


u∈NT j (Dε,θ)

EXu(θT j )


emβ

 θT1
0 |ξs |

pds


≤


u∈NT j (Dε,θ)


k≥0

emβθT1(|Xu(θT j )|+k+1)p
PXu(θT j )


sup

S∈[0,θT1]

|ξS − ξ0| ∈ [k, k + 1]



≤ |NT j (Dε, θ)|

k≥0

emβθT1(T q
j (∥ f ∥θ+2ε)+k+1)p 4e−k2/(2θT1)

√
2πθT1

;

since p < 2 this sum converges, giving

E


sup

T ∈[T j ,T j+1]

|NT (D, θ)|

FθT j


≤ |NT j (Dε, θ)|eO(T pq

j )

where the O(T pq
j ) is deterministic. But pq = 2q − 2 and by Markov’s inequality

P


sup

T ∈[T j ,T j+1]

|NT (D, θ)|

|NT j (Dε, θ)|
> exp


δT 2q−1

j



≤ E


E


sup

T ∈[T j ,T j+1]

|NT (D, θ)|

FθT j


|NT j (Dε, θ)|

 exp(−δT 2q−1
j )

≤ exp(O(T 2q−2
j ) − δT 2q−1

j ).
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Thus we may apply Borel–Cantelli to see that

P

lim sup
j→∞

1

T 2q−1
j

log sup
T ∈[T j ,T j+1]

|NT (D, θ)|

|NT j (Dε, θ)|
> δ

 = 0.

Again taking a union over δ > 0 gives the result. �

We are now in a position to give an upper bound for any closed set D in continuous time. This
upper bound is not quite what we asked for in Theorem 5, but the final step – truncating K at θ0
– will be carried out in Corollary 33.

Proposition 32. If D ⊂ C[0, 1] is closed, then for any θ ∈ [0, 1]

lim sup
T →∞

1

T 2q−1 log |NT (D, θ)| ≤ K (D, θ)

almost surely.

Proof. Clearly (since our first particle starts from 0) NT (D \ C0[0, 1], θ) = ∅ for all T , so we
may assume without loss of generality that D ⊂ C0[0, 1]. Now fix δ > 0 and choose N (by
Lemma 19) such that

lim sup
T →∞

1

T 2q−1 log |NT (FN , θ)| = −∞, a.s.

By Lemma 21 and the fact that RN (2ε) → 0 as ε → 0, we may choose ε > 0 such that
K (Dε, θ)+ mβ RN (2ε) < K (D, θ)+ δ. Then, by Lemma 20, for any N and some n (depending
on N ) and fk ∈ C[0, 1] \ FN , k = 1, 2, . . . , n,

P


lim sup
T →∞

1

T 2q−1 log |NT (D, θ)| > K (D, θ) + δ


≤ P


lim sup
T →∞

1

T 2q−1 log |NT (FN , θ)| > K (D, θ) + δ


+

n
k=1

P


lim sup
T →∞

1

T 2q−1 log |NT ( fk, ε, θ)| > K (Dε, θ) + mβ RN (2ε)


.

By our choice of N , the first term on the right-hand side is zero, and by Lemma 31 all of the
terms in the sum are also zero. As usual we take a union over δ > 0 to complete the proof. �

Corollary 33. For any closed set D ⊂ C[0, 1] and θ ∈ [0, 1], we have

lim sup
T →∞

1

T 2q−1 log |NT (D, θ)| ≤ sup{K ( f, θ) : f ∈ D, θ0( f ) ≥ θ}

almost surely.

Proof. Since |NT (D, θ)| is integer valued,

1

T 2q−1 log |NT (D, θ)| < 0 ⇒
1

T 2q−1 log |NT (D, θ)| = −∞.

Thus, by Proposition 32, if K (D, θ) < 0 then

P


lim sup
T →∞

1

T 2q−1 log |NT (D, θ)| > −∞


= 0.
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Further, clearly for φ ≤ θ and any T ≥ 0, if NT (D, φ) = ∅ then necessarily NT (D, θ) = ∅.
Thus if there exists φ ≤ θ with K (D, φ) < 0, then

P


lim sup
T →∞

1

T 2q−1 log |NT (D, θ)| > −∞


= 0

which completes the proof. �

Proof of Theorem 5. Combining Corollary 29 with Corollary 33 completes the proof. �

Proof of Corollary 6. Corollary 6 is proven in the same way as Corollary 3 (it is easily checked
that the limsup and liminf of Theorem 4 agree on sets of the form Dz,ϵ := { f ∈ C[0, 1], | f (1)−

z| ≤ ε} and Az,ϵ := { f ∈ C[0, 1], | f (1) − z| < ε} for ε > 0). �

6. Proof of Theorem 8

There is much overlap in the proofs of Theorems 8 and 5, and so we will leave out many of
the details and refer to earlier sections. Our task is also made easier by the fact that we are trying
to prove a statement about one-dimensional distributions rather than the full sample paths of the
BBM.

Proof of upper bound in Theorem 8. Lemma 19 tells us that for any k > 0, we may choose
N ∈ N such that

P(NT (FN , θ) ≠ ∅) ≤ exp

−kT 2q−1


(44)

(recall that for large N , FN was a set of extreme paths that were very difficult for particles to
follow). Now, in Proposition 23 we saw that for any f ∈ D \ FN and any φ ∈ [0, 1],

lim sup
T →∞

1

T 2q−1 log E

|NT ( f, ε, φ)|


≤ K (Dε, φ) + mβ RN (ε)

where for each N , RN (ε) → 0 as ε → 0.
Fix δ > 0, choose k > 0 such that −k < infφ<θ K (D, φ) and N large enough that (44) is

verified. By a similar argument to that in Lemma 21 (the upper-semicontinuity carries over easily
to the function f → infφ≤θ K ( f, φ)) we may then choose ε small enough that

inf
φ≤θ

K (Dε, φ) + mβ RN (ε) ≤ inf
φ≤θ

K (D, φ) + δ.

Using compactness (see Lemma 20), we can choose n ∈ N and f1, f2, . . . , fn ∈ D \ FN such
that

D ⊂ FN ∪ B( f1, ε) ∪ · · · ∪ B( fn, ε) ⊂ Dε.

Now for φ ≤ θ and any set B,

{NT (B, φ) = ∅} ⊆ {NT (B, θ) = ∅}

so, for T large enough (depending on the f1, . . . , fn)

P(NT (D, θ) ≠ ∅) ≤ P(NT (FN , θ) ≠ ∅) +

n
i=1

P(NT ( fi , ε, θ) ≠ ∅)

≤ P(NT (FN , θ) ≠ ∅) +

n
i=1

inf
φ≤θ

P(NT ( fi , ε, φ) ≠ ∅)
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≤ e−kT 2q−1
+

n
i=1

inf
φ≤θ

E[|NT ( fi , ε, φ)|]

≤ e−kT 2q−1
+

n
i=1

inf
φ≤θ

eK (Dε,φ)T 2q−1
+mβ RN (ε)T 2q−1

≤ (n + 1)eδT 2q−1
inf
φ≤θ

eK (D,φ)T 2q−1
.

Taking logarithms, dividing by T 2q−1 and letting δ ↓ 0 we get the desired result. �

Proof of lower bound in Theorem 8. First note that it suffices to consider the case A = B( f, ε)
for f ∈ C2

[0, 1]. Now

P(NT (A, θ) ≠ ∅) = P(ZT (θT ) > 0)

= Q̃T


1

ZT (θT )


≥ Q̃T


1

Q̃T [ZT (θT )|G̃T ]


.

As in the proof of Lemma 16 we can use Lemmas 14 and 15 to bound the spine decomposition;
for any δ > 0 we may choose ε small enough that

Q̃T [ZT (θT )|G̃T ] ≤


u<ξθT

Aue−δ
 Su

0 |ξs |
pds−K ( f,Su/T )T 2q−1

+2δT 2q−1

≤


u<ξθT

Aue
−δ

 Su
0 |ξs |

pds− inf
φ<θ

K ( f,φ)T 2q−1
+2δT 2q−1

.

Thus (since δ > 0 was arbitrary) it certainly suffices to show that

lim inf
T →∞

Q̃T

 1
u<ξθT

Aue−δ
 Su

0 |ξs |pds

 > 0.

But using the auxiliary random variables A1, A2, . . . and S1, S2, . . . from the proof of Proposi-
tion 17 we have

Q̃T


lim sup
T →∞


u<ξθT

Aue−δ
 Su

0 |ξs |
pds < ∞


≥ Q


∞

n=1

Ane−δSn < ∞


= 1.

We are now done by Fatou’s lemma. �

7. Optimal paths: proofs of Theorems 4 and 7

We start with Theorem 7. We recall our optimisation problem.

K ( f, t) :=


 t

0


mβ| f (s)|p

−
1
2

f ′(s)2

ds if f ∈ H1,

−∞ otherwise
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where the class of functions in which we would like to optimise is

H1 := { f : [0, 1] → R : f (t) =

 t

0
h(s) ds, h ∈ L2

[0, 1]}.

Optimisation problem. For z ∈ R, find

sup
f ∈H1, f (1)=z

K ( f, 1),

subject to

K ( f, θ) ≥ 0 ∀θ ∈ [0, 1]. (45)

By symmetry it is sufficient to consider z ≥ 0. Furthermore, if g ∈ H1 is any path satisfying
the constraint (45), then |g| ∈ H1 also satisfies the constraint, has the same value at the end point,
and K (g, 1) = K (|g|, 1). So, without loss of generality, we can assume for existence that g ≥ 0
and drop the modulus sign from the definition of K .

Optimal paths. For each s ∈ [0, 1] define a path g ∈ H1 as follows

(i) For all t ∈ [0, s), we set g(t) = r(t), the scaled position of the right-most particle (see (16)).
Otherwise said, g is the solution to

1
2

g′(t)2
= mβg(t)p, g(0) = 0, t ≤ s.

(ii) For t ∈ [s, 1], g satisfies

g′′(t) + mβpg p−1(t) = 0,

with initial condition specified by the fact that g and g′ are continuous at s.

We aim to show that, for each z ∈ [0, z̄] the above optimisation problem has a unique solution
given by the unique gz constructed as above by picking the unique s = sz ∈ [0, 1] such that
gz(1) = z.

The strategy for our proof is that we will first show that gz defined above is the unique solution
to the optimisation problem in the smaller class C2

piecewise ⊂ H1 of functions which are piecewise

C2 on [0, 1] (note that the optimal functions gz have discontinuous second derivative at sz). We
will do this by exhibiting a series of properties which a solution to the optimisation problem,
if one exists, must satisfy. The unique function satisfying all of these properties will be our gz .
We will then show that gz is also the optimum in the full class of functions H1 by showing that
if there existed a better function in the larger class, there would also be a better function in our
restricted class, and so obtain a contradiction.

For notational convenience, in places where it will not cause confusion, we will write g
for gz .

Lemma 34. Any optimal (in C2
piecewise) path g is in fact C1.

Proof. As g is C2
piecewise, there exist 0 = x0 < x1 < · · · < xK = 1 such that g is C2 on

any interval (xi , xi+1), i = 0, . . . , K − 1. It is therefore enough to show that ∀i = 1, . . . ,

K − 1, g′(xi−) = g′(xi+). To simplify notations we just write x for xi in the following.
Suppose that g′(x+) < g′(x−). We will show that it is possible to construct a better function.

Choose ε > 0, and consider the function g̃ defined by taking g, and interpolating linearly on the
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interval [x − ε, x + ε]:

g̃(t) :=


g(t), t ∈ [0, x − ε)

g(x − ε) +
t − (x − ε)

2ε


g(x + ε) − g(x − ε)


, t ∈ [x − ε, x + ε)

g(t), t ∈ [x + ε, 1].

For t ∈ (x − ε, x), we have g′(t) = g′(x−) + O(ε); similarly, for t ∈ (x, x + ε), we have
g′(t) = g′(x+)+ O(ε). To simplify notation, we define g′

− := g′(x−) and g′
+ := g′(x+). Using

Taylor expansions again, we have

K (g̃, 1) − K (g, 1) =

 x+ε

x−ε


1
2

g′(t)2
−

1
2

g̃′(t)2


dt + O(ε2)

= ε
1

2
g′
−

2
+

1
2

g′
+

2
−

1
4
(g′

− + g′
+)2


+ O(ε2)

=
ε

4
(g′

− − g′
+)2

+ O(ε2) > 0

for all sufficiently small ε > 0. A very similar calculation shows that g̃ satisfies (45) for all
t ∈ (x − ε, x + ε), which proves the result. The case g′

+ < g′
− is settled in the same manner. �

Lemma 35. If g is an optimal trajectory then, on any interval I of [0, 1] such that K (g, t) > 0
for all t ∈ I , one has

mβpg p−1
+ g′′

= 0. (46)

Proof. Starting from an optimal trajectory g, consider the deformed trajectory g + εh where ε

is small and h is a sufficiently smooth function with h(0) = h(1) = 0 so that in particular the
end-point is still fixed at z. Using a Taylor expansion and an integration by parts we have

K (g + εh, t) = K (g, t) +

 t

0


mβ(g + εh)p

− mβg p
− g′h′ε


ds + o(ε),

= K (g, t) + ε

 t

0


mβpg p−1

+ g′′

h ds − εg′(t)h(t) + o(ε). (47)

Assume that K (g, t) > 0 on some interval I . Then for any t1 < t2 in I , there exists c > 0 such
that K (g, t) > c for all t ∈ [t1, t2]. Assuming that (46) does not hold, choose h to be of the
same sign of mβpg p−1

+ g′′ in t ∈ [t1, t2] and zero everywhere else. Then, for ε small enough,
K (g + εh, 1) > K (g, 1) and K (g + εh, t) ≥ 0 for all t (one simply needs to choose ε so that
εg′(t)h(t) − o(ε) < c for all t ∈ [t1, t2].) Therefore, if g does not satisfy (46), then g + εh is a
better path. �

Recall from (16) that

r(s) =


mβs2

2
(2 − p)2

 1
2−p

describes the limiting shape of the boundary of the trace of the rescaled BBM. It solves

1
2

r ′(s)2
= mβr(s)p, r(0) = 0.
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We are now going to prove that it is not possible to find a path f along which the condition (45)
remains valid and f (s) > r(s) for some s ∈ (0, 1). Indeed this would clearly yield a
contradiction with Theorem 1.

Lemma 36. Let f ∈ C2
piecewise, f (0) = 0, f ≥ 0 be such that (45) holds. Then

f (s) ≤ r(s), ∀s ∈ [0, 1].

Proof. Suppose that there exists f ∈ C2
piecewise, f (0) = 0, f ≥ 0 such that (45) holds and such

that f (s0) > r(s0) for some s0 ∈ (0, 1). We construct g ∈ C2
piecewise, g(0) = 0, g ≥ 0 as follows:

let s1 = s0 if K ( f, s0) > 0 and otherwise pick s1 > s0 so that f (s0) > r(s1).

– On [0, s0] take g = f ,
– On [s0, s1] take g(s) = f (s0),
– On [s1, 1] g is the solution of

1
2

g′(s)2
= mβg(s)p, g(s1) = f (s0).

Observe that g has the properties that g(1) > r(1), K (g, s1) > 0 and K (g, 1) = K (g, s1).
According to Theorem 5, for any ε > 0

lim inf
T →∞

T −
2+p
2−p log |NT (B(g, ϵ), 1)| ≥ K (g, 1) = K (g, s1) > 0

which contradicts Theorem 1. (Note that it is possible to give a purely analytic proof of this
lemma. Suppose that f satisfies the conditions above, and let s0 = inf{s > 0 : f (s) > r(s)}.
Then one may use Euler–Lagrange techniques to show that f (s) = r(s) for all s ≤ s0, deduce
that K ( f, s0) = 0, and then show that K ( f, s) < 0 for some s shortly after s0.) �

Now to prove the first line of Theorem 7, it is sufficient to show that

sup


K ( f, 1), 0 ≤ f (s) ≤ r(s), f (1) = z


≤ K a.s.(z). (48)

Take f such that f ≤ r and ∃t < 1, K ( f, t) < 0. Then f cannot be optimal among paths which
stay below r : one can easily construct a better path f̃ staying below r by choosing f̃ = r up to
r−1( f (t)), constant between that point and t , and equal to f thereafter.

Lemma 37. Define sz(g) := inf{s ∈ [0, 1] : g(s) ≠ r(s)}. Then any optimal path g solves

mβpg p−1
+ g′′

= 0

on the interval s ∈ (sz(g), 1). Furthermore, K (g, s) > 0 for all s ∈ (sz(g), 1).

Proof. If sz(g) = 1, there is nothing to prove, so we assume sz(g) ∈ [0, 1). The first thing to
observe is that any point (t, y) ∈ {t ∈ [0, 1], 0 ≤ y < r(t)} can be reached by a path f such that
f (t) = y and K ( f, t) > 0. If y > 0 just let f = r until r(s) = y and then let f stay constant (K
stays at 0 until s and then accumulates some positive growth until t). If y = 0 it is equally easy
to check that there is a path which reaches this point, fulfils (45) and has a strictly positive K at
the end.

Suppose now that there exists t > sz such that g(t) = r(t). Then there must exist [a, b] ⊂

[sz, t], a < b, such that g(a) − r(a) = g(b) − r(b) = 0 and r(t) − g(t) > 0 for all t ∈ (a, b).
But by the previous observation this means that K (g, t) > 0 for all t ∈ (a, b) and therefore
by Lemma 35 g must be strictly concave on (a, b). But since r(s) is strictly convex this is a
contradiction. Thus we must have K > 0 on (sz, 1] and we conclude by Lemma 35 again. �
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Lemmas 35, 34 and 37 show that any positive solution gz to the optimisation problem
(in C2

piecewise) is such that there exists sz such that

(i) gz = r on [0, sz],
(ii) gz solves g′′

z + mβpg p−1
z = 0 on (sz, 1], and gz(1) = z,

(iii) g′
z is continuous at sz .

Therefore we conclude that the unique positive solution to the optimisation problem in C2
piecewise

is gz . (Note that it is easily seen that sz > 0 for p > 0.)

Lemma 38. For any endpoint z, if g is an optimal path over C2
piecewise then g is also optimal

over H1.

Proof. We have shown the existence of an optimal path gz over all paths in C2
piecewise; suppose

there is a better path f ∈ H1. That is, f (0) = 0, f (1) = z, f ≥ 0, K ( f, t) ≥ 0 ∀t ∈ [0, 1] and
K ( f, 1) > K (gz, 1) + ε for some ε > 0. For each n ∈ N, define hn : [0, 1] → R by setting
hn(k/n) = f (k/n) for all k = 0, 1, 2, . . . , n and interpolating linearly elsewhere. Then each hn
is piecewise linear and hence certainly piecewise C2; and since hn agrees with f at each k/n and
linear functions minimise derivatives, we have t

0
h′

n(s)2ds ≤

 t

0
f ′(s)2ds ∀t ∈


0,

1
n
,

2
n
, . . . , 1


.

Now by choosing n large we may insist that t

0
h′

n(s)2ds <

 t

0
f ′(s)2ds + ε ∀t ∈ [0, 1]

and  t

0
hn(s)pds >

 t

0
f (s)pds −

ε

2mβ
∀t ∈ [0, 1];

but then hn is a function in C2
piecewise satisfying all the required properties and with K (hn, 1) >

K ( f, 1) − ε > K (gz, 1). This contradicts the assumption that gz was optimal in C2
piecewise. �

All that is left to prove the first part of Theorem 7 is to show uniqueness in H1.

Proof of uniqueness. Now fix z > 0 and suppose that ∃h ∈ H1 such that h(1) = z and
K (h, 1) = K (gz, 1) and θ0(h) ≥ 1 but that h ≢ gz . Take s ∈ [0, 1] such that h(s) ≠ gz(s).
By rescaling time by 1/s and considering the endpoint h(s), by Lemma 38 we can find some
positive piecewise C2 function f1 ending at h(s) with growth rate K ( f, s) ≥ K (h, s). Equally,
there is an optimal positive piecewise C2 function f2 amongst functions beginning at h(s) and
ending at z; this is not immediate from our results as we have not considered starting from
anywhere other than the origin, but our proofs easily carry over with no extra work. Since
these two optimal growth rates (from 0 to h(s), and from h(s) to z) are achieved by positive
piecewise C2 functions, there is a positive piecewise C2 function f such that f (s) = h(s)
and K ( f, 1) ≥ K (h, 1) = K (gz, 1). This contradicts the uniqueness of gz amongst positive
piecewise C2 functions.

Note that for z = 0 and p > 0, the solution is not unique: the positive function g0 and the
negative function −g0 are both optimal. �

We now turn to the second part of Theorem 7 which concerns the total population size.



2140 J. Berestycki et al. / Stochastic Processes and their Applications 125 (2015) 2096–2145

Lemma 39. There exists a unique ẑ a.s. ≥ 0 such that

K̂ a.s. := K a.s.(ẑ a.s.) = sup
z

K a.s.(z) = sup


K ( f, 1), f ∈ C[0, 1], θ0( f ) = ∞

.

The total population size satisfies

lim
T →∞

1

T
2+p
2−p

log |N (T )| = K̂ a.s. almost surely,

where one finds

g′

ẑ a.s.
(1) = 0, ẑ a.s. =

 √
2mβ

2
3p−2

2p

2−p +
 1

2−1/p
dx

√
1−x p


2

2−p

and

K̂ a.s. =
2 − p

2 + p
mβ ẑ p

a.s..

Proof. By Lemma 38 we may assume without loss of generality that g ∈ C2
piecewise. Let ε > 0 be

small and g be any such function satisfying (45). For t ∈ [1 − ε, 1] we have g(t) = g(1)+ O(ε),
and g′(t) = g′(1) + O(ε). Therefore 1

1−ε


mβg(t)p

−
1
2

g′(t)2


dt = ε


mβg(1)p
−

1
2

g′(1)2


+ o(ε). (49)

Now consider the function

g̃(t) :=


g(t), t ∈ [0, 1 − ε)

g(1 − ε), t ∈ [1 − ε, 1].

Note that g̃ satisfies (45) because g does, and by (49),

K (g̃, 1) = K (g, 1 − ε) + εmβg(1 − ε)p

= K (g, 1 − ε) + εmβg(1)p
+ o(ε)

= K (g, 1) +
ε

2
g′(1)2

+ o(ε).

We see that K (g̃, 1) > K (g, 1) for all sufficiently small ε, unless g′(1) = 0, hence the first part
of the result.

For s > sz one has

1
2

g′
z(s)

2
+ mβgz(s)

p
= mβC (50)

where C is some constant; but for z = ẑ a.s. one has g′

ẑ a.s.
(1) = 0 and gẑ a.s.(1) = ẑ a.s. and thus in

this case C = ẑ p
a.s.. Therefore (for s > sz),

g′

ẑ a.s.
(s)

ẑ p
a.s. − gẑ a.s.(s)

p
=


2mβ. (51)
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We integrate the above expression with respect to s from sẑ a.s. to 1 and we make the change of
variable x = gẑ a.s.(s)/ẑ a.s.. We obtain

ẑ1−p/2
a.s.

 1

2−1/p

dx
√

1 − x p
=


2mβ(1 − sẑ a.s.). (52)

For the lower limit on the integral, we used that 1
2 g′

z(sz)
2

= mβgz(sz)
p and hence gz(sz)

p
=

C/2. For z = ẑ a.s. this gives gz(sẑ a.s.) = ẑ a.s.2−1/p. The value of sẑ a.s. then comes from the
explicit expression gz(s) = r(s) when s ≤ sẑ a.s. .

The expression for K̂ a.s. comes from Theorem 9, which will be proved in Section 8. �

The solution to the unconstrained optimisation problem given in Theorem 4 is now simple in
light of the work above.

Proof of Theorem 4. Inspecting the proof of Lemma 35, we see that the solution to this
unconstrained problem amongst functions which are piecewise C2 is given by the function hz
satisfying

h′′(u) + mβph p−1
= 0,

h(0) = 0,

h(1) = z.

A similar argument to that in Lemma 38 then shows that this function is also optimal over H1,
and another similar to that in Lemma 39 gives that the optimal z is that with h′

z(1) = 0.
The value of ẑE is obtained in the same way as ẑ a.s. except that (51) must be integrated from

0 to 1 rather than from sz to 1. The value of K̂E also comes from Theorem 9. �

As an aside, we note that

KE(0) = 2−
2p

2−p K̂E. (53)

This can be seen by remarking that the optimal path h0 is symmetrical around s = 1/2 and
hence that h′

0(1/2) = 0. The trajectory h0 up to s = 1/2 is therefore the trajectory maximising
the total population at time T/2 and, given the total population growth rate, KE(0) = K (h0, 1) =

2 × K (h0, 1/2) = 2 × 2−
2+p
2−p K̂E which is the same as (53).

8. Further properties of the optimal paths

In this section we will prove Theorem 9 which states that both growth rate KE(z) and K a.s.(z)
are solutions of the same differential equation (22). We will give only one demonstration for
both quantities, highlighting where necessary the differences between the two cases. We write in
a generic way K (z) for either quantity KE(z) and K a.s.(z). Similarly, fz(s) stands in this section
for either optimal path gz(s) or hz(s) defined respectively in Theorems 4 and 7. One can write

K (z) = −
1
2

 1

sz

f ′
z (s)

2 ds + mβ

 1

sz

fz(s)
p ds. (54)

where fz(s) is a solution of

f ′′
z (s) + mβp fz(s)

p−1
= 0, fz(1) = z (55)
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and 
sz = 0, fz(sz) = 0 in the expectation case,
fz(sz) = r(sz), f ′

z (sz) = r ′(sz) in the almost sure case.
(56)

(In the almost sure case, the optimal path is equal to r(s) for 0 ≤ s ≤ sz where sz is an unknown
quantity which has to be solved for. Recall that r(s) is the trajectory of the almost sure rightmost
particle; on this trajectory the population does not grow, which is why one can start the integrals
in (54) from sz .)

We begin with a simple lemma showing monotonicity of the optimal paths in z.

Lemma 40. The optimal paths and their derivatives are monotone in z. That is, if 0 ≤ w ≤ z,

fw(s) ≤ fz(s) and f ′
w(s) ≤ f ′

z (s).

Proof. Suppose there exists u0 such that fw(u0) > fz(u0). By the intermediate value theorem
there exists s ∈ (sz ∨ sw, u0) and t ∈ (u0, 1) such that fw(s) = fz(s) and fw(t) = fz(t). Then
by our characterisation of the optimal functions in terms of solutions to differential equations,
we must have fw(u) = fz(u) for all u ∈ [s, t]. This contradicts the fact that fw(u0) >

fz(u0). A similar proof works for f ′
z by considering hypothetical points u1 < u2 such that

fw(u2) − fw(u1) > fz(u2) − fw(u1). �

Lemma 41. One has K ′(z) = − f ′
z (1).

Proof. By Lemma 40 we may differentiate (54) with respect to z. One gets

K ′(z) = −

 1

sz

f ′
z (s)

∂ f ′
z

∂z
(s) ds + mβp

 1

sz

fz(s)
p−1 ∂ fz

∂z
(s) ds

−
dsz

dz


mβ fz(sz)

p
−

1
2

f ′
z (sz)

2


. (57)

The third term in the right-hand side is zero, either because dsz/dz = 0 (expectation case) or
because the square bracket is zero (almost sure case, see (19) with (56)). Integrating the first
term by parts leads to

K ′(z) =

 1

sz


f ′′
z (s) + mβp fz(s)

p−1
 ∂ fz

∂z
(s) ds − f ′

z (1)
∂ fz

∂z
(1) + f ′

z (sz)
∂ fz

∂z
(sz). (58)

The integral is null because of (55). As fz(1) = z for all z, one has ∂ fz/∂z(1) = 1 in the second
term. The third term is also null because ∂ fz/∂z(sz) = 0. This is trivial in the expectation case
as fz(sz) = fz(0) = 0 and it is also true in the almost sure case because2 fz(s) is independent of
z up to s = sz . �

2 To be more verbose, as fz(sz) = r(sz) one has

d
dz

fz(sz) = r ′(sz)
dsz

dz
=

∂ fz

∂z
(sz) + f ′

z (sz)
dsz

dz
.

Using f ′(sz) = r ′(sz) gives ∂ fz/∂z(sz) = 0.
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Proof of Theorem 9. We now establish relations between the integrals in (54). Integrating the
second integral by parts and applying Lemma 41, one gets 1

sz

f ′
z (s)

2 ds = −zK ′(z) − fz(sz) f ′
z (sz) −

 1

sz

fz(s) f ′′
z (s) ds. (59)

Then, using (55), 1

sz

f ′
z (s)

2 ds − mβp
 1

sz

fz(s)
p ds = −zK ′(z) − fz(sz) f ′

z (sz). (60)

We now multiply (55) by f ′
z (s) and integrate:

1
2

f ′
z (s)

2
+ mβ fz(s)

p
= c. (61)

The integration constant c can be obtained by evaluating at s = 1 or at s = sz :

c =
1
2

K ′(z)2
+ mβz p

=
1
2

f ′
z (sz)

2
+ mβ fz(sz)

p. (62)

Then, integrating (61) between sz and 1,

1
2

 1

sz

f ′
z (s)

2 ds + mβ

 1

sz

fz(s)
p ds = (1 − sz)c

=
1
2

K ′(z)2
+ mβz p

− sz


1
2

f ′
z (sz)

2
+ mβ fz(sz)

p


. (63)

where both expressions for c were used. Now, the right linear combination of (60) and (63) gives
K (z): multiplying (60) by −2/(2 + p) and (63) by (2 − p)/(2 + p), adding, and using (54), one
gets

K (z) =
2zK ′(z) + (2 − p)


K ′(z)2/2 + mβz p


2 + p

+
2 fz(sz) f ′

z (sz) − (2 − p)sz


f ′
z (sz)

2/2 + mβ fz(sz)
p


2 + p
. (64)

The second term in the right-hand side is zero. This is trivial in the expectation case as sz = 0
and f (sz) = 0, and can easily be shown in the almost sure case: replace all fz by r using (56),
replace mβr(sz)

p by another r ′(sz)
2/2 from (19) and after simplification one gets that the term

is zero if r ′(sz)/r(sz) = 2/[(2 − p)sz], which is true as can be seen from differentiating the
logarithm of (16) with respect to s. Then, one checks easily that (64) is equivalent to (22).

Note that for the optimal endpoint ẑ one has K ′(ẑ) = 0 and hence obtains

K (ẑ) =
2 − p

2 + p
mβ ẑ p, (65)

as stated in Theorems 4 and 7.
It now remains to prove that (22) can be rewritten, for z ≥ 0, as in (27) with a plus sign in

front of the square root. For this, it is sufficient to show that K ′(0+) ≥ 0.
For p > 0, we have seen both in the expectation and the almost-sure case that the non-

negative optimal path f0(s) going to the origin is not identically zero but goes away from the
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origin to take advantage of higher branching rates. Consider this positive optimal path and let
zm = maxs f0(s) > 0. For 0 < z ≤ zm , consider the path f̃ which is equal to f0 up to the
point where z is reached for the last time and which is identically equal to z past that point.
Clearly, one has K ( f̃ , 1) > K ( f0, 1) and θ0( f̃ ) ≥ θ0( f0). This implies that K (z) > K (0) for
all positive z smaller than zm and hence that K ′(0+) ≥ 0. (Note that this argument holds both
in the expectation and almost-sure cases, although the value of zm is not the same.) For p = 0,
optimal paths in expectation and almost-sure cases coincide, one has the explicit solution K (z) =

mβ − z2/2 and K ′(0) = 0, the square root in (27) is zero and the sign is of no importance. �
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