For any given spacetime the choice of time coordinate is undetermined. A
particular choice is the absolute time associated with a preferred vector
field. Using the absolute time Hamilton's equations are
−(δHc)/(δq)=π˙+Θπ,+ (\delta H_{c})/(\delta \pi)=\dot{q},where\Theta = V^{a}_{.;a}istheexpansionofthevectorfield.Thusthereisahithertounnoticedtermintheexpansionofthepreferredvectorfield.Hamilton′sequationscanbeusedtodescribefluidmotion.Inthiscasetheabsolutetimeisthetimeassociatedwiththefluid′sco−movingvector.Asmeasuredbythisabsolutetimetheexpansiontermispresent.Similarlyincosmology,eachobserverhasaco−movingvectorandHamilton′sequationsagainhaveanexpansionterm.ItisnecessarytoincludetheexpansiontermtoquantizesystemssuchastheabovebythecanonicalmethodofreplacingDiracbracketsbycommutators.Hamilton′sequationsinthisformdonothaveacorrespondingsympleticform.ReplacingtheexpansionbyaparticlenumberN\equiv exp(-\int\Theta d \ta)andintroducingtheparticlenumbersconjugatemomentum\pi^{N}thestandardsympleticformcanberecoveredwithtwoextrafieldsNand\pi^N$. Briefly the possibility of a non-standard sympletic form
and the further possibility of there being a non-zero Finsler curvature
corresponding to this are looked at.Comment: 10 page