976 research outputs found
Detection of abandoned mineshafts using towed-array capacitive resistivity and real-time kinematic GPS navigation
The UK has a long history of mining but it was not until 1875 that the accurate mapping of mine workings and the submission of abandonment plans became a legal requirement. Where mineshafts are indicated on plans, they may be mislocated due to poor or inaccurate surveying. Consequently, the redevelopment of derelict land in the built environment frequently encounters potential geohazards, such as old adits, bell pits and shafts. These mining relics pose a serious risk to health and safety.
This paper demonstrates how the combination of modem geophysical survey techniques with state-of-the-art satellite-based positioning may assist in the detection of such features. Recent advances in these fields offer the possibility of using towed-array resistivity instruments in conjunction with highly accurate (sub-decimetre) real-time kinematic global positioning systems (RTKGPS). Here we describe the use of multi-offset towed-array capacitive resistivity (CR) with GPS navigation for mapping resistivity over a known mineshaft in the historic mining area of Bonsall Leys in Derbyshire, UK
Discussion: "Radial strain behaviors and stress state interpretation of soil under direct simple shear" by X. Kang, Y. Cheng, and L. Ge.
Two methods were used in determining the stress state of simple shear tests in the discussed paper. The authors stated that the second method was proposed by Oda and Konishi, based on the distribution law of contact force (Oda, M. and Konishi, J., âRotation of Principal Stresses in Granular Material During Simple,â Soils and Foundations., Vol. 14, No. 4, 1974, pp. 39â53.). However, the relation used in the method was found by Roscoe et al. from experimental results (Roscoe, K. H., Bassett, R. H., and Cole, E. R. L., âPrincipal Axes Observed During Simple Shear of a Sand,â Proceedings of the Geotechnical Conference on Shear Strength Properties of Natural Soils and Rocks, Vol. 1, Norwegian Geotechnical Institute, Oslo, 1967, pp. 231â237.). In addition, the determination of the constant k, which used k = 1 â K0, was problematic in the discussed paper. First, the equation could only be deduced after some assumptions were made. Second, the value of k was not a constant if the K0 changed
Fast linear algebra is stable
In an earlier paper, we showed that a large class of fast recursive matrix
multiplication algorithms is stable in a normwise sense, and that in fact if
multiplication of -by- matrices can be done by any algorithm in
operations for any , then it can be done
stably in operations for any . Here we extend
this result to show that essentially all standard linear algebra operations,
including LU decomposition, QR decomposition, linear equation solving, matrix
inversion, solving least squares problems, (generalized) eigenvalue problems
and the singular value decomposition can also be done stably (in a normwise
sense) in operations.Comment: 26 pages; final version; to appear in Numerische Mathemati
Probing mSUGRA via the Extreme Universe Space Observatory
An analysis is carried out within mSUGRA of the estimated number of events
originating from upward moving ultra-high energy neutralinos that could be
detected by the Extreme Universe Space Observatory (EUSO). The analysis
exploits a recently proposed technique that differentiates ultra-high energy
neutralinos from ultra-high energy neutrinos using their different absorption
lengths in the Earth's crust. It is shown that for a significant part of the
parameter space, where the neutralino is mostly a Bino and with squark mass
TeV, EUSO could see ultra-high energy neutralino events with
essentially no background. In the energy range 10^9 GeV < E < 10^11 GeV, the
unprecedented aperture of EUSO makes the telescope sensitive to neutralino
fluxes as low as 1.1 \times 10^{-6} (E/GeV)^{-1.3} GeV^{-1} cm^{-2} yr^{-1}
sr^{-1}, at the 95% CL. Such a hard spectrum is characteristic of supermassive
particles' -body hadronic decay. The case in which the flux of ultra-high
energy neutralinos is produced via decay of metastable heavy particles with
uniform distribution throughout the universe is analyzed in detail. The
normalization of the ratio of the relics' density to their lifetime has been
fixed so that the baryon flux produced in the supermassive particle decays
contributes to about 1/3 of the events reported by the AGASA Collaboration
below 10^{11} GeV, and hence the associated GeV gamma-ray flux is in complete
agreement with EGRET data. For this particular case, EUSO will collect between
4 and 5 neutralino events (with 0.3 of background) in ~ 3 yr of running. NASA's
planned mission, the Orbiting Wide-angle Light-collectors (OWL), is also
briefly discussed in this context.Comment: Some discussion added, final version to be published in Physical
Review
Braid group statistics implies scattering in three-dimensional local quantum physics
It is shown that particles with braid group statistics (Plektons) in
three-dimensional space-time cannot be free, in a quite elementary sense: They
must exhibit elastic two-particle scattering into every solid angle, and at
every energy. This also implies that for such particles there cannot be any
operators localized in wedge regions which create only single particle states
from the vacuum and which are well-behaved under the space-time translations
(so-called temperate polarization-free generators). These results considerably
strengthen an earlier "NoGo-theorem for 'free' relativistic Anyons".
As a by-product we extend a fact which is well-known in quantum field theory
to the case of topological charges (i.e., charges localized in space-like
cones) in d>3, namely: If there is no elastic two-particle scattering into some
arbitrarily small open solid angle element, then the 2-particle S-matrix is
trivial.Comment: 25 pages, 4 figures. Comment on model-building added in the
introductio
Relating the Lorentzian and exponential: Fermi's approximation,the Fourier transform and causality
The Fourier transform is often used to connect the Lorentzian energy
distribution for resonance scattering to the exponential time dependence for
decaying states. However, to apply the Fourier transform, one has to bend the
rules of standard quantum mechanics; the Lorentzian energy distribution must be
extended to the full real axis instead of being bounded from
below (``Fermi's approximation''). Then the Fourier transform
of the extended Lorentzian becomes the exponential, but only for times , a time asymmetry which is in conflict with the unitary group time evolution
of standard quantum mechanics. Extending the Fourier transform from
distributions to generalized vectors, we are led to Gamow kets, which possess a
Lorentzian energy distribution with and have exponential
time evolution for only. This leads to probability predictions
that do not violate causality.Comment: 23 pages, no figures, accepted by Phys. Rev.
Assessing the role of EO in biodiversity monitoring: options for integrating in-situ observations with EO within the context of the EBONE concept
The European Biodiversity Observation Network (EBONE) is a European contribution on terrestrial monitoring to GEO BON, the Group on Earth Observations Biodiversity Observation Network. EBONEâs aims are to develop a system of biodiversity observation at regional, national and European levels by assessing existing approaches in terms of their validity and applicability starting in Europe, then expanding to regions in Africa. The objective of EBONE is to deliver:
1. A sound scientific basis for the production of statistical estimates of stock and change of key indicators;
2. The development of a system for estimating past changes and forecasting and testing policy options and management strategies for threatened ecosystems and species;
3. A proposal for a cost-effective biodiversity monitoring system.
There is a consensus that Earth Observation (EO) has a role to play in monitoring biodiversity. With its capacity to observe detailed spatial patterns and variability across large areas at regular intervals, our instinct suggests that EO could deliver the type of spatial and temporal coverage that is beyond reach with in-situ efforts. Furthermore, when considering the emerging networks of in-situ observations, the prospect of enhancing the quality of the information whilst reducing cost through integration is compelling. This report gives a realistic assessment of the role of EO in biodiversity monitoring and the options for integrating in-situ observations with EO within the context of the EBONE concept (cfr. EBONE-ID1.4). The assessment is mainly based on a set of targeted pilot studies. Building on this assessment, the report then presents a series of recommendations on the best options for using EO in an effective, consistent and sustainable biodiversity monitoring scheme.
The issues that we faced were many:
1. Integration can be interpreted in different ways. One possible interpretation is: the combined use of independent data sets to deliver a different but improved data set; another is: the use of one data set to complement another dataset.
2. The targeted improvement will vary with stakeholder group: some will seek for more efficiency, others for more reliable estimates (accuracy and/or precision); others for more detail in space and/or time or more of everything.
3. Integration requires a link between the datasets (EO and in-situ). The strength of the link between reflected electromagnetic radiation and the habitats and their biodiversity observed in-situ is function of many variables, for example: the spatial scale of the observations; timing of the observations; the adopted nomenclature for classification; the complexity of the landscape in terms of composition, spatial structure and the physical environment; the habitat and land cover types under consideration.
4. The type of the EO data available varies (function of e.g. budget, size and location of region, cloudiness, national and/or international investment in airborne campaigns or space technology) which determines its capability to deliver the required output.
EO and in-situ could be combined in different ways, depending on the type of integration we wanted to achieve and the targeted improvement. We aimed for an improvement in accuracy (i.e. the reduction in error of our indicator estimate calculated for an environmental zone). Furthermore, EO would also provide the spatial patterns for correlated in-situ data.
EBONE in its initial development, focused on three main indicators covering:
(i) the extent and change of habitats of European interest in the context of a general habitat assessment;
(ii) abundance and distribution of selected species (birds, butterflies and plants); and
(iii) fragmentation of natural and semi-natural areas.
For habitat extent, we decided that it did not matter how in-situ was integrated with EO as long as we could demonstrate that acceptable accuracies could be achieved and the precision could consistently be improved. The nomenclature used to map habitats in-situ was the General Habitat Classification. We considered the following options where the EO and in-situ play different roles:
using in-situ samples to re-calibrate a habitat map independently derived from EO; improving the accuracy of in-situ sampled habitat statistics, by post-stratification with correlated EO data; and using in-situ samples to train the classification of EO data into habitat types where the EO data delivers full coverage or a larger number of samples.
For some of the above cases we also considered the impact that the sampling strategy employed to deliver the samples would have on the accuracy and precision achieved.
Restricted access to European wide species data prevented work on the indicator âabundance and distribution of speciesâ.
With respect to the indicator âfragmentationâ, we investigated ways of delivering EO derived measures of habitat patterns that are meaningful to sampled in-situ observations
Receptor activity-modifying protein modulation of parathyroid hormone-1 receptor function and signaling
Introduction: Receptor activity-modifying proteins (RAMPs) are known to modulate the pharmacology and function of several G-protein-coupled receptors (GPCRs), including the parathyroid hormone 1 receptor (PTH1R). However, the precise effects of different RAMPs on PTH1R signalling and trafficking remain poorly understood. This study investigated the impact of RAMP2 and RAMP3 on PTH1R function using a range of PTH and PTH-related protein (PTHrP)-derived ligands.
Methods: We employed FRET imaging to assess PTH1R interactions with RAMPs. Cell surface expression of PTH1R was evaluated in the presence of RAMPs. PTH1R-mediated cAMP accumulation, β-arrestin recruitment, and calcium signalling were measured in response to various ligands. Antibody-capture scintillation proximity assays were used to examine G-protein activation patterns.
Results: PTH1R preferentially interacted with RAMP2 and, to a lesser extent, RAMP3, but not with RAMP1. RAMP3 co-expression reduced cell surface expression of PTH1R. RAMP2 significantly enhanced PTH1R-mediated signalling responses to PTH (1-34), PTHrP (1-34), PTH (1-84), and PTH (1-17) analogue ZP2307, while RAMP3 co-expression attenuated or abolished these responses. Full-length PTHrP analogues exhibited lower potency and efficacy than PTHrP (1-34) in activating PTH1R. RAMP2 increased the potency and/or efficacy of these analogues, whereas RAMP3 reduced these responses. RAMP2 differentially modulated G-protein activation by PTH1R in a ligand-dependent manner, with PTH (1-34) and PTHrP (1-34) inducing distinct patterns of G-protein subtype activation.
Discussion: These findings highlight the complex role of RAMPs in regulating PTH1R signalling and trafficking, revealing differential effects of RAMP2 and RAMP3 on receptor function. The data suggest that targeting the PTH1R/RAMP2 complex may be a promising strategy for developing novel bone anabolic therapies by leveraging biased agonism and functional selectivity. Further research using physiologically relevant models is needed to elucidate the therapeutic potential of this approach
Non-linear numerical simulations of magneto-acoustic wave propagation in small-scale flux tubes
We present results of non-linear, 2D, numerical simulations of
magneto-acoustic wave propagation in the photosphere and chromosphere of
small-scale flux tubes with internal structure. Waves with realistic periods of
three to five minutes are studied, after applying horizontal and vertical
oscillatory perturbations to the equilibrium model. Spurious reflections of
shock waves from the upper boundary are minimized thanks to a special boundary
condition. This has allowed us to increase the duration of the simulations and
to make it long enough to perform a statistical analysis of oscillations. The
simulations show that deep horizontal motions of the flux tube generate a slow
(magnetic) mode and a surface mode. These modes are efficiently transformed
into a slow (acoustic) mode in the vA < cS atmosphere. The slow (acoustic) mode
propagates vertically along the field lines, forms shocks and remains always
within the flux tube. It might deposit effectively the energy of the driver
into the chromosphere. When the driver oscillates with a high frequency, above
the cut-off, non-linear wave propagation occurs with the same dominant driver
period at all heights. At low frequencies, below the cut-off, the dominant
period of oscillations changes with height from that of the driver in the
photosphere to its first harmonic (half period) in the chromosphere. Depending
on the period and on the type of the driver, different shock patterns are
observed.Comment: 22 pages 6 color figures, submitted to Solar Physics, proceeding of
SOHO 19/ GONG 2007 meeting, Melbourne, Australi
Epistemic and Ontic Quantum Realities
Quantum theory has provoked intense discussions about its interpretation since its pioneer days. One of the few scientists who have been continuously engaged in this development from both physical and philosophical perspectives is Carl Friedrich von Weizsaecker. The questions he posed were and are inspiring for many, including the authors of this contribution. Weizsaecker developed Bohr's view of quantum theory as a theory of knowledge. We show that such an epistemic perspective can be consistently complemented by Einstein's ontically oriented position
- âŚ