6,679 research outputs found

    Static Torsion Testing and Modeling of a Variable Thickness Hybrid Composite Bull Gear

    Get PDF
    Torsional strength of a variable thickness hybrid gear web was measured by performing static testing on the part in a large torsion test frame. The outer rim of the hybrid gear web was fixed to the bottom of the test frame and loading was applied to the web through a shaft. The test setup included the installation of digital image correlation (DIC) systems to obtain deformation and strain measurements from the surfaces of the hybrid gear web and the mechanical test equipment to ensure reliability of the test. The results indicated that the variable thickness hybrid gear web achieved approximately twice the torsional strength compared to that of previous hybrid gear designs. The DIC analysis showed significantly more straining of the loading shaft than the actual test article. Additionally, the results demonstrated the importance and affect that the metallic, lobed interlock features had on the principal strain and out-of-plane displacement fields. The analysis revealed that the fixed outer rim was in fact rotating and a rigid body motion compensation (RBMC) function was computed to determine the actual rotation of the hub and composite web relative to the outer rim. Modeling simulations were performed for the variable thickness hybrid gear web and correlated well with the RBMC rotational deformation seen in the DIC analysis. In addition to benchmarking the load capacity of the hybrid gear web, measuring its strength is useful information to define the parameters needed for dynamic, endurance, and other testing of the part

    Scale dependent alignment between velocity and magnetic field fluctuations in the solar wind and comparisons to Boldyrev's phenomenological theory

    Full text link
    (Abridged abstract) A theory of incompressible MHD turbulence recently developed by Boldyrev predicts the existence of a scale dependent angle of alignment between velocity and magnetic field fluctuations that is proportional to the lengthscale of the fluctuations to the power 1/4. In this study, plasma and magnetic field data from the Wind spacecraft are used to investigate the angle between velocity and magnetic field fluctuations in the solar wind as a function of the timescale of the fluctuations and to look for the power law scaling predicted by Boldyrev.Comment: Particle Acceleration and Transport in the Heliosphere and Beyond, 7th Annual International Astrophysics Conference, Kauai, Hawaii, G. Li, Q. Hu, O. Verkhoglyadova, G. P. Zank, R. P. Lin, J. Luhmann (eds), AIP Conference Proceedings 1039, 81-8

    Dynamics of First Order Transitions with Gravity Duals

    Full text link
    A first order phase transition usually proceeds by nucleating bubbles of the new phase which then rapidly expand. In confining gauge theories with a gravity dual, the deconfined phase is often described by a black hole. If one starts in this phase and lowers the temperature, the usual description of how the phase transition proceeds violates the area theorem. We study the dynamics of this phase transition using the insights from the dual gravitational description, and resolve this apparent contradiction.Comment: 11 pages, 1 figure. v2: minor clarifications, reference adde

    High Speed Thermal Imaging on Ballistic Impact of Triaxially Braided Composites

    Get PDF
    Ballistic impact experiments were performed on triaxially braided polymer matrix composites to study the heat generated in the material due to projectile velocity and penetration damage. Quantifying the heat generation phenomenon is crucial for attaining a better understanding of composite behavior and failure under impact loading. The knowledge gained can also be used to improve physics-based models which can numerically simulate impact of composites. Triaxially braided (0/+60/-60) composite panels were manufactured with T700S standard modulus carbon fiber and two epoxy resins. The PR520 (toughened) and 3502 (untoughened) resin systems were used to make different panels to study the effects of resin properties on temperature rise. Ballistic impact tests were conducted on these composite panels using a gas gun, and different projectile velocities were applied to study the effect on the temperature results. Temperature contours were obtained from the rear surface of the panel during the test through a high speed, infrared (IR) thermal imaging system. The contours show that high temperatures were locally generated and more pronounced along the axial tows for the T700S/PR520 composite specimens; whereas, tests performed on T700S/3502 composite panels using similar impact velocities demonstrated a widespread area of lower temperature rises. Nondestructive, ultrasonic C-scan analyses were performed to observe and verify the failure patterns in the impacted panels. Overall, the impact experimentation showed temperatures exceeding 525 K (485degF) in both composites which is well above the respective glass transition temperatures for the polymer constituents. This expresses the need for further high strain rate testing and measurement of the temperature and deformation fields to fully understand the complex behavior and failure of the material in order to improve the confidence in designing aerospace components with these materials

    Evaluation of a Variable Thickness Hybrid Composite Bull Gear

    Get PDF
    For several years, NASA Glenn Research Center and the U.S. Army Research Laboratory have been investigating hybrid (composite/steel) gear technology for use in vertical lift drive systems. The hybrid gear concept replaces the structural portion of a gear between the shaft and the gear rim with a lightweight carbon fiber composite, in an effort to reduce the overall weight of a gear and increase the drive system power density. Past research includes both small-scale and large-scale hybrid gear concepts, all of which have a constant composite thickness throughout. The design described in this paper is of a variable thickness, such that the composite is thickest at the inner diameter and this thickness is gradually reduced toward the outer diameter. The resulting "stair stepped" design stems from dropping plies of the braided carbon fiber prepreg composite fabric gradually with increased radius. Additionally, the interlock pattern at the inner metallic adapter was adjusted slightly from previous designs to obtain a better stress distribution on the inner metallic adapter. The manufactured variable thickness web was tested both in static torsion tests and operationally in a relevant gearbox environment. The results of these experiments will be presented and compared to a baseline steel configuration

    Damping device for a stationary labyrinth seal

    Get PDF
    A stationary labyrinth seal system includes a seal housing having an annular cavity, a plurality of damping devices, and a retaining ring. The damping devices are positioned within the annular cavity and are maintained within the annular cavity by the retaining ring

    Perceived barriers to pediatrician and family practitioner participation in pediatric clinical trials: Findings from the Clinical Trials Transformation Initiative.

    Get PDF
    Despite legislation to stimulate pediatric drug development through clinical trials, enrolling children in trials continues to be challenging. Non-investigator (those who have never served as a clinical trial investigator) providers are essential to recruitment of pediatric patients, but little is known regarding the specific barriers that limit pediatric providers from participating in and referring their patients to clinical trials. We conducted an online survey of pediatric providers from a wide variety of practice types across the United States to evaluate their attitudes and awareness of pediatric clinical trials. Using a 4-point Likert scale, providers described their perception of potential barriers to their practice serving as a site for pediatric clinical trials. Of the 136 providers surveyed, 52/136 (38%) had previously referred a pediatric patient to a trial, and only 17/136 (12%) had ever been an investigator for a pediatric trial. Lack of awareness of existing pediatric trials was a major barrier to patient referral by providers, in addition to consideration of trial risks, distance to the site, and time needed to discuss trial participation with parents. Overall, providers perceived greater challenges related to parental concerns and parent or child logistical barriers than study implementation and ethics or regulatory barriers as barriers to their practice serving as a trial site. Providers who had previously been an investigator for a pediatric trial were less likely to be concerned with potential barriers than non-investigators. Understanding the barriers that limit pediatric providers from collaboration or inhibit their participation is key to designing effective interventions to optimize pediatric trial participation

    Evaluation of Nanomaterial Approaches to Damping in Epoxy Resin and Carbon Fiber/Epoxy Composite Structures by Dynamic Mechanical Analysis

    Get PDF
    Vibration mitigation in composite structures has been demonstrated through widely varying methods which include both active and passive damping. Recently, nanomaterials have been investigated as a viable approach to composite vibration damping due to the large surface available to generate energy dissipation through friction. This work evaluates the influence of dispersed nanoparticles on the damping ratio of an epoxy matrix. Limited benefit was observed through dispersion methods, however nanoparticle application as a coating resulting in up to a three-fold increase in damping

    Success of Ureteral Stents for Intrinsic Ureteral Obstruction

    Full text link
    Purpose: Previous reports suggest a high success rate for retrograde ureteral stenting for intrinsic ureteral obstruction, but few preoperative predictors of success have been offered. We reviewed our experience to look for factors that suggest failure of stents for intrinsic ureteral obstruction. Materials and Methods: We retrospectively reviewed the outcome of retrograde ureteral stent placement for intrinsic ureteral obstruction without concurrent or intended definitive management of the obstruction. Results: Thirty-eight patients treated for intrinsic ureteral obstruction, representing 41 ureteral units (UUs), were monitored for an average of 25.5 months. The overall success rate was 88%. Of the successes, 13 UUs had definitive therapy to permanently remove the cause of obstruction, obstruction resolved in 12 UUs after stent placement, and 11 UUs were managed with indwelling stents. Therapy failed in five UUs, with a median time to failure of 1.9 months. Of the UUs in which failure occurred, three failures were caused by misdiagnosis; in the remaining two, the stent did not correct the obstruction. On univariate analysis, male sex (P = 0.006), increased creatinine level as a presenting symptom (P = 0.002), and more severe preoperative hydronephrosis (P = 0.042) were predictive of failure. Adverse events were low, with complications from stenting occurring on only four of 41 UUs. Conclusion: If initial stent placement was possible, intrinsic ureteral obstruction was managed successfully in 88% of patients. Given high success and minimal complications, retrograde placement of ureteral stents can be performed to treat patients with intrinsic ureteral obstruction. Treatment failure is more likely to occur in men and patients with severe hydronephrosis or an elevated creatinine level.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63109/1/end.2007.0201.pd

    Visualizing Kinetically Robust (Co4L6)-L-III Assemblies in Vivo: SPECT Imaging of the Encapsulated [Tc-99m]TcO4- Anion

    Get PDF
    © 2018 American Chemical Society. Noncovalent encapsulation is an attractive approach for modifying the efficacy and physiochemical properties of both therapeutic and diagnostic species. Abiotic self-assembled constructs have shown promise, yet many hurdles between in vitro and (pre)clinical studies remain, not least the challenges associated with maintaining the macromolecular, hollow structure under nonequilibrium conditions. Using a kinetically robust CoIII4L6 tetrahedron we now show the feasibility of encapsulating the most widely used precursor in clinical nuclear diagnostic imaging, the I-emitting [99mTc]TcO4- anion, under conditions compatible with in vivo administration. Subsequent single-photon emission computed tomography imaging of the caged-anion reveals a marked change in the biodistribution compared to the thyroid-accumulating free oxo-anion, thus moving clinical applications of (metallo)supramolecular species a step closer
    • …
    corecore