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Abstract 
Vibration mitigation in composite structures has been demonstrated through widely varying methods 

which include both active and passive damping. Recently, nanomaterials have been investigated as a 
viable approach to composite vibration damping due to the large surface available to generate energy 
dissipation through friction. This work evaluates the influence of dispersed nanoparticles on the damping 
ratio of an epoxy matrix. Limited benefit was observed through dispersion methods, however nanoparticle 
application as a coating resulting in up to a three-fold increase in damping. 

Introduction 
Vibration damping is an essential property to study for structural materials used in environments 

where vibrations and oscillations are present. Such a preview can predict potential material performance 
issues; such as micro-cracking or a complete material failure. There are several bodies of literature 
available which describe methods to reduce damping in composite materials. These include: application 
of a coating, (Ref. 1) incorporation of a viscoelastic material, (Refs. 2 and 3) and variation in composite 
ply configuration (Ref. 4). Numerous reports also describe nanoparticle dispersion as a viable technique 
to improve the damping characteristics of a polymer or composite (Ref. 5). 

For each method available to increase material damping capability, numerous variables and large test 
matrices can be envisioned. A useful technique to analyze material damping is through beam vibration 
testing which yields damping measurements over a range of bending mode resonance frequencies, as 
described in ASTM Standard E 756-05, “Standard Test Method for Measuring Vibration- Damping 
Properties of Materials”. However, the calculations associated with this measurement are cumbersome 
and a reliable screening tool would provide valuable insight to down-select candidate materials. 

Dynamic mechanical analysis (DMA) is a technique that uses small samples to quickly characterize 
the viscoelastic damping properties of a material. The technique provides a measure of material loss 
modulus (E”) and the storage modulus (E’), respectively describing the energy dissipated and energy 
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stored. The ratio of these properties (E”/E’) is the damping factor, tan δ, thus energy dissipated over 
energy stored. This value can be tracked by DMA to identify trends and damping mechanisms. DMA uses 
small rectangular coupons representative of a larger structure. Given the small sample size, factors such 
as friction between sample and fixture clamps or variation of sample dimensions may have a large impact 
on the damping data.  

The initial portion of this study was conducted to gain confidence in the reproducibility of tan δ 
characterization by DMA. Epon 862/W epoxy resin was selected as the baseline material. The samples 
varied in depth, width, and length to show a full spectrum of size; with the purpose of identifying an 
optimum sample size to use as a screening tool for further beam testing. From the DMA an increase in 
tan δ could be recognized as greater damping within the material and select samples would be moved 
forward for full beam vibration tests. 

The second component of this study included an investigation of material damping enhancement 
through nanomaterial based approaches. A series of nanomaterials were either dispersed into the baseline 
862/W resin, or applied as a coating. The materials were characterized by DMA to evaluate their 
influence on damping, and methods showing significant benefit were selected for beam testing. 

Experimental Procedure 

Materials 

The baseline resin was composed of Epon 862 and W curing agent, received from Miller-Stephenson. 
A mix ratio of 100:26.4, epoxy to curing agent was used.  

Nanoparticles included: 
 

a. Cloisite 30B, purchased from Southern Clay Product, (2 wt% loading) 
b. Graphene, purchased from Vorbeck, Inc., (0.5 wt% loading). 
c. Epoxy functionalized graphite, purchased from Adherent Technologies, Inc., (0.5 wt% loading). 
d. PR19 Carbon nanofiber, purchased from Applied Sciences, Inc., (0.1 to 1.5 wt% loading). 
e. Single Wall Carbon Nanotubes (SWCNT), Double Wall Carbon Nanotubes (DWCNT), and 

Multiwall Carbon Nanotubes (MWCNT), were purchased from Nanoshel and used in the range 
from 0.1 to 1.5 wt% loading. 

 

All materials were used as received. 

Sample Preparation 

Coupons to Evaluate Reproducibility of DMA Damping Measurements 

Four plaques of 862/W epoxy resin were prepared with the amount of material calculated for plaque 
thicknesses of 1.5, 3.0, and 6.0 mm. These were chosen to portray a range of dimensions for the DMA 
testing as suggested by ASTM standard for Dynamic Mechanical Properties, ASTM D4065-06. 

The resin samples for DMA testing were prepared by stirring Epon 862 epoxy and W curing agent 
with a spatula until completely mixed. The mixture was transferred to a mold that had been coated with a 
mold release agent, Figure 1. Once in the mold, the liquid resin was degassed in a vacuum oven at 65 °C 
for approximately 1.5 hr. 

The sample cure profile included preheating a hydraulic press 121 °C, placing the material in the 
press, and maintaining for 1 hr. No pressure was applied during the low temperature dwell. The 
temperature was increased to 177 °C over 15 min followed by a 2.5 hr dwell. During this hold, following 
gelation, a top plate was positioned on the resin to ensure a flat, level top surface. The mold was then 
slowly cooled to ambient temperature. 
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TABLE 1.—SAMPLE DIMENSIONS FOR 
DMA REPRODUCIBILITY STUDY 

Sample Depth Width  Length 
1 1.5 mm 

(0.03 in.) 
9.4 mm 

(0.38 in.) 
50 mm 
(2.0 in.) 

2 3 mm  
(0.12 in.) 

7.6 mm  
(0.3 in.) 

38.1 mm 
(1.5 in.) 

2a 3 mm  
(0.12 in.) 

9.4 mm 
(0.38 in.) 

38.1 mm 
(1.5 in.) 

2b 3 mm 
(0.12 in.) 

9.4 mm 
(0.38 in.) 

50 mm 
(2.0 in.) 

3 6 mm 
(0.24 in.) 

7.6 mm  
(0.3 in.) 

38.1 mm 
(1.5 in.) 

 

Coupons to Evaluate Influence of Nanomaterials on Damping 

Resin plaques containing dispersed nanoparticles were prepared as 8 by 3 in. sheets of 3 mm 
thickness. Each nanomaterial was separately added at the earlier specified loading of 862 resin. The 
materials were mixed in a Thinky Mixer for up to 20 min. The resin was cooled, and W curing agent was 
added. The mixture was then added to the mold and processed as previously described. 

Testing by DMA 

Samples were tested on a TA Instruments 2980 DMA set at a 1 Hz frequency and 20 µm amplitude. 
A 5 °C per minute ramp rate was used. 

Numerous references site recommended sample dimensions for DMA characterization (Ref. 6). The 
862/W samples of varying thickness were cut to create a reasonable range for the DMA characterization. 
Table 1 displays the dimensions selected from recommendations in ASTM D4065-06 and D5023-07. 

Two separate DMA fixtures were used to evaluate damping reproducibility. They included the Single 
Cantilever Beam (SCB) and Three Point Bend (TPB) fixtures as shown in Figure 2. The SCB fixture 
clamps the sample on both ends; potentially creating friction which could influence the material damping 
characteristics. With a small sample size the effect of the friction in the damping could be significant. In 
the three-point bend test, the samples are not clamped; instead the beam rests on platforms and a preset 
load is applied to set the sample in place. 
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Results on Variation in Tan δ Measured by DMA 
The purpose of these tests were to identify the variability of tan δ values as a function of fixture and 

sample dimension changes. DMA results demonstrated that variation in sample length and width had little 
to no influence on the tan δ values. The material thickness proved to be the relevant parameter regardless 
of the fixture used. 

Variations in Tan δ With Sample Thickness Using a Single Cantilever Beam Fixture 

The temperature of interest for the damping value is below 50 °C; ideally room temperature. Within 
the SCB tests, specimen thicknesses of 1.5 and 3 mm led to low variation in tan δ; 5 and 0 percent, 
respectively within each thickness set, Figure 3. The variation between the 1.5 and 3 mm thick samples 
was approximately 15 percent. 

Increasing thickness to 6 mm increased the variability to almost 30 percent, Figure 4. Of most 
concern with these samples however was the large variation in Tg. Again, samples of each thickness were 
machined from a single stock panel. The 15 °C variation in Tg was not anticipated. 

Variations in Tan δ With Sample Thickness Using a Three Point Bend Fixture 

There was considerable variation the tan δ values measured using the three point bend test. Tan δ 
values were taken at 50 °C. This again was not anticipated due to the minimal clamping of the sample. 
Results from these tests are shown in Figure 5. In this case, variation in tan δ value within the 3 mm thick 
sample set was up to 50 percent, as compared to no variation using the single cantilever beam fixture. 

According to the ASTM D4065-94 and D5023-94 Standards, E’ data generated, like other DMA 
property data, are only intended to indicate relative rather than absolute values since the measurements 
are influenced by experimental conditions and instrumentation compliance; meaning results can vary 
depending on the instrument used. 
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Sullivan and Dykeman have reported that the value for E’ is influenced by the sample span-to-
thickness ratio, drive amplitude, and loading clamp used (Ref. 7). Their investigations to determine the 
parameters for improved repeatability and reproducibility of E’ measurements used the three-point 
bending clamp. The three point bend mode was selected because the deformation is considered to be more 
pure than either the single/dual cantilever or tension modes since clamping effects are eliminated. 

Within this DMA sample study, a variation in the measured tan δ value was observed within samples 
ranging from 1.5 to 6 mm in thickness. These measurements also demonstrated variation in Tg. 

While the variation in tan δ data collected with the three point bend fixture was greater, the Tg was 
consistent. It was concluded that the three point bend fixture would be used for material screening by 
DMA. Due to the 50 percent scatter noted in the measured tan δ, initial screening of materials for 
damping enhancements would require a tan δ increase greater than 50 percent to be considered reasonable 
for continued characterization by beam testing. 
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Results on Damping Through Nanoparticle Dispersion 
Nanocomposite samples were prepared as previously described. Each plaque was machined to 

provide: (a) two beams for vibration tests; 0.75 in. W by 8 in. L, and (b) three beams for dynamic 
mechanical analysis; 0.3 in. W by 1.5 in. L. Representative images are shown in Figure 6. 

Unfortunately, of the nanoparticles investigated, none lead to a greater than 50 percent increase in 
material damping over the baseline resin. Tan δ curves are shown in Figure 7 of nanocomposites 
composed of 862/W resin and: (a) Cloisite 30B (2 wt% loading), (b) Graphene (0.5 wt% loading), and 
(c) Epoxy functionalized graphite (0.5 wt% loading). 

Tan δ is calculated by the ratio of E”/E’ (energy dissipated over energy stored). For nanocomposites 
fabricated from the above listed nanoparticles, a reduction of both E’ and E” was observed, therefore the 
ratio of these properties remained approximately unchanged. As a result, the damping coefficient was 
reduced or maintained relative to the baseline material. 
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TABLE 2.—DMA RESULTS OF CARBON NANOFIBER AND CARBON NANOTUBE SAMPLES 
Material Loading, 

wt% 
E’, 

MPa 
E”, 

MPa 
Tan δ 

CNF (PR19) 0 1388 31.5 0.0227 
 0.05 1694 31.9 0.0188 
 0.5 1533 32.6 0.0208 
 1 1909 37.6 0.0197 
 1.5 1536 28.9 0.0188 

SWCNT 0 1343 34.3 0.0256 
 0.05 1693 38.2 0.0226 
 0.5 1896 47.6 0.0251 
 1 2302 56.6 0.0246 
 1.5 1026 26.3 0.0256 

DWCNT 0 1343 34.3 0.0256 
 0.05 1385 35.6 0.0257 
 0.5 1570 36.9 0.0235 
 1 1858 46.7 0.0250 
 1.5 1213 33.8 0.0279 

MWCNT 0 1343 34.3 0.0256 
 0.05 1793 38.0 0.0212 
 0.5 1808 37.2 0.0206 
 1 2111 44.5 0.0211 
 1.5 2442 48.42 0.0198 

 
Often, an increase in E’ is observed in nanocomposite materials; due to the higher stiffness of the 

nanoparticle relative to the polymer matrix. As shown in Table 2, within the CNF nanocomposites, 
storage modulus was increased, as was loss modulus. To realize an increase in damping however, the 
increase in E” would have to more than compensate for the increased E’. This was not observed in these 
nanocomposites, and as a result, tan δ was reduced relative to the baseline material. 

Within the CNT nanocomposites, tan δ was maintained regardless of nanotube loading or structure 
(single wall, double wall, multiwall). In all cases, the increase in E’ was accompanied by a comparable 
increase in loss modulus. As a result, there was not a large change in damping noted by DMA, none of the 
nanocomposite materials moved forward to beam testing. 

The data listed in Table 2 also shows a drop in storage modulus for most materials as loading reached 
1.5 wt%. This was attributed to disruption of the crosslinked network due to increased material viscosity 
at the higher loading (Ref. 8). 
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Results of Damping Enhancement Through Coatings 
Nanoparticle based sheets were purchased from both Applied Sciences Inc. and Buckeye Composites. 

These sheets included: (a) graphene sheet (80 percent graphene, 20 percent MWCNT), (b) multiwall 
carbon nanotube sheet, and (c) carbon nanofiber sheets; 5 and 10 mil thick. The nanoparticle sheets did 
not contain a binder material. 

Coatings were applied to an IM7/8552-1, unidirectional, 16 ply laminate through co-cure of a resin 
film which bonded the coating to the composite. A sample coated with solely resin film was fabricated for 
comparison and composite coupons were sectioned for DMA. DMA was run with samples mounted as 
either ‘coating up’ in contact with the central fixture, or ‘down’. The coated coupons demonstrated up to a 
300 percent increase in damping, Figure 8, with neither the orientation of the sample in the fixture nor the 
addition of resin influencing tan δ. The suspected mechanism is energy dissipation through friction 
generated as the nanoparticles within the coating slide against neighboring particles. The large interfacial 
area of the nanoparticles would contribute to the significant increase in energy dissipation. 

The primary concern with application of these coatings relates to their thickness, lack of binder, and 
therefore weak bonding of the outermost nanoparticles. This led to nanoparticle release and potential 
health concerns. However, this issue may be mitigated through incorporation of a binder or a reduction in 
coating thickness. A photomicrograph of a graphene sheet bonded to the composite substrate is shown in 
Figure 9. The resin adhesive partially penetrated the coating, but non-bonded particulate is visible. In 
addition, voids are visible between the coating and substrate, which would contribute to poor bonding. 

Beam Testing 

Beam vibration testing was performed on the coated composites as the DMA results showed an 
improvement to damping beyond the 50 percent margin of scatter. Beam vibration testing was conducted 
at around 1500 Hz, according to ASTM E-756-05, “Standard Test Method for Measuring Vibration-
Damping Properties of Materials.” The trend in material damping was opposite that measured by DMA. 
Here we see a reduction in damping ratio in the coated coupons relative to the baseline material. The 
damping ratio ζ shown in Figure 10 is equivalent to 1/2 tan δ. The differences among the beams may have 
been within the range of experimental error, since the damping was so low, and there was only a single 
beam measured of each type. These values are much lower than those measured by DMA (tan δ of ~0.006 
compared to >0.02 by DMA). Damping can depend on vibration frequency, so it was decided that further 
DMA testing of material samples at various frequencies should be done. 
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Frequency Dependence Study 

Based on the variation in results obtained from DMA and beam tests, a frequency dependence study 
was initiated. The frequency dependence of the coated composite damping performance was character-
ized by DMA. Frequency sweeps at room temperature provided data on coupon tan δ at frequencies 
ranging from 1 to 200 Hz; Figure 11. At frequencies between 1 and 200 Hz, the damping factor of the 
coated coupons is greater than that of the baseline material. Near 100 Hz the frequency of the coated 
samples reaches a maximum and either levels off or declines. The opposite is true of the baseline 
material, where the damping factor is increased beyond 100 Hz. Elucidation of the mechanisms responsi-
ble for the change in damping is beyond the scope of this paper; however the data demonstrates a clear 
frequency dependence and offers explanation of the reduced damping observed in the beam tests which 
were conducted at 1500 Hz. 

Summary 
DMA was used to evaluate damping in epoxy resin and composites coupons. A study demonstrated 

that the measured tan δ value of samples taken from a single panel varied by up to 35 percent. Following 
this study, several nanoparticles were dispersed in an epoxy resin, including carbon nanotubes, carbon 
nanofibers, graphene, and layered silicate clay. A change in tan δ greater than 50 percent was necessary to 
be considered significant. This was not observed following dispersion of any of the nanoparticles, due to 
off—setting increases in both the material storage and loss moduli. Application of the nanoparticles as a 
coating did not influence the inherent material properties and demonstrated a significant increase in 
damping by DMA. This damping increase was diminished as the test frequency was increased. 
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