4 research outputs found

    Remote sensing of sunlight-induced chlorophyll fluorescence and reflectance of Scots pine in the boreal forest during spring recovery

    Get PDF
    A measurement campaign to assess the feasibility of remote sensing of sunlight-induced chlorophyll fluorescence (ChlF) from a coniferous canopy was conducted in a boreal forest study site (Finland). A Passive Multi-wavelength Fluorescence Detector (PMFD) sensor, developed in the LURE laboratory, was used to obtain simultaneous measurements of ChlF in the oxygen absorption bands, at 687 and 760 nm, and a reflectance index, the PRI (Physiological Reflectance Index), for a month during spring recovery. When these data were compared with active fluorescence measurements performed on needles they revealed the same trend. During sunny days fluorescence and reflectance signals were found to be strongly influenced by shadows associated with the canopy structure. Moreover, chlorophyll fluorescence variations induced by rapid light changes (due to transient cloud shadows) were found to respond more quickly and with larger amplitude under summer conditions compared to those obtained under cold acclimation conditions. In addition, ChlF at 760 nm was observed to increase with the chlorophyll content. During this campaign, the CO2 assimilation was measured at the forest canopy level and was found remarkably well correlated with the PRI index

    Progress on the development of an integrated canopy fluorescence model

    No full text
    Typical environmental plant stress factors are excess of light, deficiencies of water and nutrients, temperature extremes, diseases, pests and pollutants. An early indicator for vegetation status and vitality by means of remote sensing would therefore serve a range of applications such as renewable resource management and precision farming. Vegetation fluorescence is a direct indicator for plant physiology, and could therefore be used as an early indicator for vegetation health status and vitality. Vegetation chlorophyll fluorescence is a function of photochemical processes and efficiency, which are directly linked to primary productivity and CO2 flux from the atmosphere, and could therefore also provide a means to assess the terrestrial carbon cycle

    Fluorescence explorer (FLEX): An optimised payload to map vegetation photosynthesis from space

    Get PDF
    The FLuorescence EXplorer (FLEX) mission proposes to launch a satellite for the global monitoring of steady-state chlorophyll fluorescence in terrestrial vegetation. Fluorescence is a sensitive probe of photosynthetic function in both healthy and physiologically perturbed vegetation, and a powerful non-invasive tool to track the status, resilience, and recovery of photochemical processes and moreover provides important information on overall photosynthetic performance with implications for related carbon sequestration. The early responsiveness of fluorescence to atmospheric, soil and plant water balance, as well as to atmospheric chemistry and human intervention in land usage makes it an obvious biological indicator in improving our understanding of Earth system dynamics. The amenability of fluorescence to remote, even space-basedobservation qualifies it to join the emerging suite of space-based technologies for Earth observation. FLEX would encompass a three-instrument array for measurement of the interrelated features of fluorescence, hyperspectral reflectance, and canopy temperature. FLEX would involve a space and ground-truthing program of 3-years duration and would provide data formats for research and applied science
    corecore