114 research outputs found

    The first, holistic immunological model of COVID‐19: Implications for prevention, diagnosis, and public health measures

    Get PDF
    The natural history of COVID-19 caused by SARS-CoV-2 is extremely variable, ranging from asymptomatic or mild infection, mainly in children, to multi-organ failure, eventually fatal, mainly in the eldest. We propose here the first model explaining how the outcome of first, crucial 10-15 days after infection, depends on the balance between the cumulative dose of viral exposure and the efficacy of the local innate immune response (natural IgA and IgM antibodies, mannose-binding lectin). If SARS-CoV-2 runs the blockade of this innate immunity and spreads from the upper airways to the alveoli in the early phases of the infections, it can replicate with no local resistance, causing pneumonia and releasing high amounts of antigens. The delayed and strong adaptive immune response (high-affinity IgM and IgG antibodies) that follows, causes severe inflammation and triggers mediator cascades (complement, coagulation, and cytokine storm), leading to complications often requiring intensive therapy and being, in some patients, fatal. Low-moderate physical activity can still be recommended. However, extreme physical activity and oral breathing with hyperventilation during the incubation days and early stages of COVID-19 facilitates re-inhalation and early direct penetration of high numbers of own virus particles in the lower airways and the alveoli, without impacting on the airway's mucosae covered by neutralizing antibodies ("viral auto-inhalation" phenomenon). This allows the virus to bypass the efficient immune barrier of the upper airway mucosa in already infected, young, and otherwise healthy athletes. In conclusion, whether the virus or the adaptive immune response reaches the lungs first is a crucial factor deciding the fate of the patient. This "quantitative and time-/sequence-dependent" model has several implications for prevention, diagnosis, and therapy of COVID-19 at all ages

    Monosodium urate crystals promote innate anti-mycobacterial immunity and improve BCG efficacy as a vaccine against tuberculosis

    Get PDF
    A safer and more effective anti-Tuberculosis vaccine is still an urgent need. We probed the effects of monosodium urate crystals (MSU) on innate immunity to improve the Bacille Calmette-Guerin (BCG) vaccination. Results showed that in vitro MSU cause an enduring macrophage stimulation of the anti-mycobacterial response, measured as intracellular killing, ROS production and phagolysosome maturation. The contribution of MSU to anti-mycobacterial activity was also shown in vivo. Mice vaccinated in the presence of MSU showed a lower number of BCG in lymph nodes draining the vaccine inoculation site, in comparison to mice vaccinated without MSU. Lastly, we showed that MSU improved the efficacy of BCG vaccination in mice infected with Mycobacterium tuberculosis (MTB), measured in terms of lung and spleen MTB burden. These results demonstrate that the use of MSU as adjuvant may represent a novel strategy to enhance the efficacy of BCG vaccination

    Cell wall-associated alpha-glucan is instrumental for Mycobacterium tuberculosis to block CD1 molecule expression and disable the function of dendritic cell derived from infected monocyte.

    Get PDF
    Summary We previously described an escape mechanism exploited by Mycobacterium tuberculosis (Mtb) to prevent the generation of fully competent dendritic cells (DC). We have now tested the effect of isolated mycobacterial components on human monocyte dif- ferentiation into DC and demonstrated that cell wall (CW)-associated alpha-glucan induces monocytes to differentiate into DC (Glu-MoDC) with the same altered phenotype and functional behaviour of DC derived from Mtb-infected monocytes (Mt-MoDC). In fact, Glu- MoDC lack CD1 molecule expression, fail to upregu- late CD80 and produce IL-10 but not IL-12. We also showed that Glu-MoDC are not able to prime effector T cells or present lipid antigens to CD1-restricted T-cell clones. Thus, we propose a mechanism of Mtb- monocyte interaction mediated by CW-associated alpha-glucan, which allows the bacterium to evade both innate and acquired immune responses

    TBVAC2020: Advancing tuberculosis vaccines from discovery to clinical development

    Get PDF
    TBVAC2020 is a research project supported by the Horizon 2020 program of the European Commission (EC). It aims at the discovery and development of novel tuberculosis (TB) vaccines from preclinical research projects to early clinical assessment. The project builds on previous collaborations from 1998 onwards funded through the EC framework programs FP5, FP6, and FP7. It has succeeded in attracting new partners from outstanding laboratories from all over the world, now totaling 40 institutions. Next to the development of novel vaccines, TB biomarker development is also considered an important asset to facilitate rational vaccine selection and development. In addition, TBVAC2020 offers portfolio management that provides selection criteria for entry, gating, and priority settings of novel vaccines at an early developmental stage. The TBVAC2020 consortium coordinated by TBVI facilitates collaboration and early data sharing between partners with the common aim of working toward the development of an effective TB vaccine. Close links with funders and other consortia with shared interests further contribute to this goal

    TBVAC2020 : advancing tuberculosis vaccines from discovery to clinical development

    Get PDF
    TBVAC2020 is a research project supported by the Horizon 2020 program of the European Commission (EC). It aims at the discovery and development of novel tuberculosis (TB) vaccines from preclinical research projects to early clinical assessment. The project builds on previous collaborations from 1998 onwards funded through the EC framework programs FP5, FP6, and FP7. It has succeeded in attracting new partners from outstanding laboratories from all over the world, now totaling 40 institutions. Next to the development of novel vaccines, TB biomarker development is also considered an important asset to facilitate rational vaccine selection and development. In addition, TBVAC2020 offers portfolio management that provides selection criteria for entry, gating, and priority settings of novel vaccines at an early developmental stage. The TBVAC2020 consortium coordinated by TBVI facilitates collaboration and early data sharing between partners with the common aim of working toward the development of an effective TB vaccine. Close links with funders and other consortia with shared interests further contribute to this goal

    Anti-COVID-19 Vaccination in Patients with Autoimmune-Autoinflammatory Disorders and Primary/Secondary Immunodeficiencies: The Position of the Task Force on Behalf of the Italian Immunological Societies

    Get PDF
    The Coronavirus disease 2019 (COVID-19) pandemic has represented an unprecedented challenge for humankind from health, economic, and social viewpoints. In February 2020, Italy was the first western country to be deeply hit by the pandemic and suffered the highest case/fatality rate among western countries. Brand new anti-COVID-19 vaccines have been developed and made available in <1-year from the viral sequence publication. Patients with compromised immune systems, such as autoimmune-autoinflammatory disorders (AIAIDs), primary (PIDs) and secondary (SIDs) immunodeficiencies, have received careful attention for a long time regarding their capacity to safely respond to traditional vaccines. The Italian Immunological Societies, therefore, have promptly faced the issues of safety, immunogenicity, and efficacy/effectiveness of the innovative COVID-19 vaccines, as well as priority to vaccine access, in patients with AIADs, PIDs, and SIDs, by organizing an ad-hoc Task Force. Patients with AIADs, PIDs, and SIDs: (1) Do not present contraindications to COVID-19 vaccines if a mRNA vaccine is used and administered in a stabilized disease phase without active infection. (2) Should usually not discontinue immunosuppressive therapy, which may be modulated depending on the patient's clinical condition. (3) When eligible, should have a priority access to vaccination. In fact, immunizing these patients may have relevant social/health consequences, since these patients, if infected, may develop chronic infection, which prolongs viral spread and facilitates the emergence of viral variants

    Liposomes Loaded With Phosphatidylinositol 5-Phosphate Improve the Antimicrobial Response to Pseudomonas aeruginosa in Impaired Macrophages From Cystic Fibrosis Patients and Limit Airway Inflammatory Response

    Get PDF
    Despite intensive antimicrobial and anti-inflammatory therapies, cystic fibrosis (CF) patients are subjected to chronic infections due to opportunistic pathogens, including multidrug resistant (MDR) Pseudomonas aeruginosa. Macrophages from CF patients show many evidences of reduced phagocytosis in terms of internalization capability, phagosome maturation, and intracellular bacterial killing. In this study, we investigated if apoptotic body-like liposomes (ABLs) loaded with phosphatidylinositol 5-phosphate (PI5P), known to regulate actin dynamics and vesicular trafficking, could restore phagocytic machinery while limiting inflammatory response in in vitro and in vivo models of MDR P. aeruginosa infection. Our results show that the in vitro treatment with ABL carrying PI5P (ABL/PI5P) enhances bacterial uptake, ROS production, phagosome acidification, and intracellular bacterial killing in human monocyte-derived macrophages (MDMs) with pharmacologically inhibited cystic fibrosis transmembrane conductance regulator channel (CFTR), and improve uptake and intracellular killing of MDR P. aeruginosa in CF macrophages with impaired bactericidal activity. Moreover, ABL/PI5P stimulation of CFTR-inhibited MDM infected with MDR P. aeruginosa significantly reduces NF-κB activation and the production of TNF-α, IL-1β, and IL-6, while increasing IL-10 and TGF-β levels. The therapeutic efficacy of ABL/PI5P given by pulmonary administration was evaluated in a murine model of chronic infection with MDR P. aeruginosa. The treatment with ABL/PI5P significantly reduces pulmonary neutrophil infiltrate and the levels of KC and MCP-2 cytokines in the lungs, without affecting pulmonary bacterial load. Altogether, these results show that the ABL/PI5P treatment may represent a promising host-directed therapeutic approach to improve the impaired phagocytosis and to limit the potentially tissue-damaging inflammatory response in CF
    corecore