126 research outputs found

    NĂ„r enden er god er alting godt...

    Get PDF

    Waldere – en angelsaksisk skat i Det Kongelige Bibliotek

    Get PDF

    New Discussions of Gender in English Romantic Studies

    Get PDF
    Over the past few decades, gender studies have reinvigorated the way in which we talk about romanticism. The article discusses some of the key developments and their critical consequences. Critical interventions have not only redirected our reading of familiar texts, but also fundamentally destabilized the canon and even made us question the validity of the label ‘romanticism’ itself. Recent critical work is beginning to uncover a mobile syntax of gender roles. The article focuses on how criticism is beginning to discern an unstable distribution of gender characteristics across the spectrum of literary writing

    Lopsided Galaxies, Weak Interactions and Boosting the Star Formation Rate

    Full text link
    To investigate the link between weak tidal interactions in disk galaxies and the boosting of their recent star formation, we obtain images and spatially integrated spectra (3615A < lambda < 5315A) for 40 late-type spiral galaxies (Sab-Sbc) with varying degrees of lopsidedness (a dynamical indicator of weak interactions). We quantify lopsidedness as the amplitude of the m=1 Fourier component of the azimuthal surface brightness distribution, averaged over a range of radii. We compare the young stellar content, quantified by EW(H\delta_abs) and the strength of the 4000 Angstrom break (D_4000), with lopsidedness and find a 3-4 sigma correlation between the two. We also find a 3.2 sigma correlation between EW(H\beta_emission) and lopsidedness. Using the evolutionary population synthesis code of Bruzual & Charlot we model the spectra as an ``underlying population'' and a superimposed ``boost population'' with the aim of constraining the fractional boost in the SFR averaged over the past 0.5 Gyr (the characteristic lifetime of lopsidedness). From the difference in both EW(H\delta_abs) and D_4000 between the most and least symmetric thirds of our sample, we infer that ~ 1x10^9 M_solar of stars are formed over the duration of a lopsided event in addition to the ``underlying'' SFH (assuming a final galactic stellar mass of 10^10 M_solar). This corresponds to a factor of 8 increase in the SFR over the past 5x10^8 years. For the nuclear spectra, all of the above correlations except D_4000 vs. are weaker than for the disk, indicating that in lopsided galaxies, the SF boost is not dominated by the nucleus.Comment: 35 pages, including 10 figures, to appear in the Astrophysical Journal, abridged abstrac

    The emission by dust and stars of nearby galaxies in the Herschel KINGFISH survey

    Get PDF
    Using new far-infrared imaging from the Herschel Space Observatory with ancillary data from ultraviolet (UV) to submillimeter wavelengths, we estimate the total emission from dust and stars of 62 nearby galaxies in the KINGFISH survey in a way that is as empirical and model independent as possible. We collect and exploit these data in order to measure from the spectral energy distributions (SEDs) precisely how much stellar radiation is intercepted and re-radiated by dust, and how this quantity varies with galaxy properties. By including SPIRE data, we are more sensitive to emission from cold dust grains than previous analyses at shorter wavelengths, allowing for more accurate estimates of dust temperatures and masses. The dust/stellar flux ratio, which we measure by integrating the SEDs, has a range of nearly three decades (from 10(-2.2) to 10(0.5)). The inclusion of SPIRE data shows that estimates based on data not reaching these far-IR wavelengths are biased low by 17% on average. We find that the dust/stellar flux ratio varies with morphology and total infrared (IR) luminosity, with dwarf galaxies having faint luminosities, spirals having relatively high dust/stellar ratios and IR luminosities, and some early types having low dust/stellar ratios. We also find that dust/stellar flux ratios are related to gas-phase metallicity ((log(f(dust)/f(*)) over bar) = -0.66 +/- 0.08 and -0.22 +/- 0.12 for metal-poor and intermediate-metallicity galaxies, respectively), while the dust/stellar mass ratios are less so (differing by approximate to 0.2 dex); the more metal-rich galaxies span a much wider range of the flux ratios. In addition, the substantial scatter between dust/stellar flux and dust/stellar mass indicates that the former is a poor proxy of the latter. Comparing the dust/stellar flux ratios and dust temperatures, we also show that early types tend to have slightly warmer temperatures (by up to 5 K) than spiral galaxies, which may be due to more intense interstellar radiation fields, or possibly to different dust grain compositions. Finally, we show that early types and early-type spirals have a strong correlation between the dust/stellar flux ratio and specific star formation rate, which suggests that the relatively bright far-IR emission of some of these galaxies is due to ongoing (if limited) star formation as well as to the radiation field from older stars, which is heating the dust grains

    A Library of Theoretical Ultraviolet Spectra of Massive, Hot Stars for Evolutionary Synthesis

    Full text link
    We computed a comprehensive set of theoretical ultraviolet spectra of hot, massive stars with the radiation-hydrodynamics code WM-Basic. This model atmosphere and spectral synthesis code is optimized for computing the strong P Cygni-type lines originating in the winds of hot stars, which are the strongest features in the ultraviolet spectral region. The computed set is suitable as a spectral library for inclusion in evolutionary synthesis models of star clusters and star-forming galaxies. The chosen stellar parameters cover the upper left Hertzsprung-Russell diagram at L >~ 10^2.75 Lsun and T_eff >~ 20,000 K. The adopted elemental abundances are 0.05 Zsun, 0.2 Zsun, 0.4 Zsun, Zsun, and 2 Zsun. The spectra cover the wavelength range from 900 to 3000 {\AA} and have a resolution of 0.4 {\AA}. We compared the theoretical spectra to data of individual hot stars in the Galaxy and the Magellanic Clouds obtained with the International Ultraviolet Explorer (IUE) and Far Ultraviolet Spectroscopic Explorer (FUSE) satellites and found very good agreement. We built a library with the set of spectra and implemented it into the evolutionary synthesis code Starburst99 where it complements and extends the existing empirical library towards lower chemical abundances. Comparison of population synthesis models at solar and near-solar composition demonstrates consistency between synthetic spectra generated with either library. We discuss the potential of the new library for the interpretation of the rest-frame ultraviolet spectra of star-forming galaxies. Properties that can be addressed with the models include ages, initial mass function, and heavy-element abundance. The library can be obtained both individually or as part of the Starburst99 package.Comment: ApJS (in press); 90 pages, 33 figures, 7 table

    Early-type galaxies in the SDSS. I. The sample

    Get PDF
    A sample of nearly 9000 early-type galaxies, in the redshift range 0.01 < z < 0.3, was selected from the Sloan Digital Sky Survey using morphological and spectral criteria. This paper describes how the sample was selected, presents examples of images and seeing corrected fits to the observed surface brightness profiles, describes our method for estimating K-corrections, and shows that the SDSS spectra are of sufficiently high quality to measure velocity dispersions accurately. It also provides catalogs of the measured photometric and spectroscopic parameters. In related papers, these data are used to study how early-type galaxy observables, including luminosity, effective radius, surface brightness, color, and velocity dispersion, are correlated with one another.Comment: 63 pages, 21 figures. Accepted by AJ (scheduled for April 2003). This paper is part I of a revised version of astro-ph/0110344. The full version of Tables 2 and 3, i.e. the tables listing the photometric and spectroscopic parameters of ~ 9000 galaxies, are available at http://astrophysics.phys.cmu.edu/~bernardi/SDSS/Etypes/TABLE

    Continuous flow analysis methods for sodium, magnesium and calcium detection in the Skytrain ice core

    Get PDF
    Dissolved and particulate sodium, magnesium and calcium are analyzed in ice cores to determine past changes in sea ice extent, terrestrial dust variability and atmospheric aerosol transport efficiency. They are also used to date ice cores if annual layers are visible. Multiple methods have been developed to analyze these important compounds in ice cores. Continuous flow analysis (CFA) is implemented with instruments that sample the meltstream continuously. In this study, CFA with ICP-MS (inductively coupled-plasma mass spectrometry) and fast ion chromatography (FIC) methods are compared for analysis of sodium and magnesium. ICP-MS, FIC and fluorescence methods are compared for analysis of calcium. Respective analysis of a 10 m section of the Antarctic WACSWAIN Skytrain Ice Rise ice core shows that all of the methods result in similar levels of the compounds. The ICP-MS method is the most suitable for analysis of the Skytrain ice core due to its superior precision (relative standard deviation: 1.6% for Na, 1.3% for Mg and 1.2% for Ca) and sampling frequency compared to the FIC method. The fluorescence detection method may be preferred for calcium analysis due to its higher depth resolution (1.4 cm) relative to the ICP-MS and FIC methods (~4 cm)

    Tracing chemical evolution over the extent of the Milky Way's Disk with APOGEE Red Clump Stars

    Get PDF
    We employ the first two years of data from the near-infrared, high-resolution SDSS-III/APOGEE spectroscopic survey to investigate the distribution of metallicity and alpha-element abundances of stars over a large part of the Milky Way disk. Using a sample of ~10,000 kinematically-unbiased red-clump stars with ~5% distance accuracy as tracers, the [alpha/Fe] vs. [Fe/H] distribution of this sample exhibits a bimodality in [alpha/Fe] at intermediate metallicities, -0.9<[Fe/H]<-0.2, but at higher metallicities ([Fe/H]=+0.2) the two sequences smoothly merge. We investigate the effects of the APOGEE selection function and volume filling fraction and find that these have little qualitative impact on the alpha-element abundance patterns. The described abundance pattern is found throughout the range 5<R<11 kpc and 0<|Z|<2 kpc across the Galaxy. The [alpha/Fe] trend of the high-alpha sequence is surprisingly constant throughout the Galaxy, with little variation from region to region (~10%). Using simple galactic chemical evolution models we derive an average star formation efficiency (SFE) in the high-alpha sequence of ~4.5E-10 1/yr, which is quite close to the nearly-constant value found in molecular-gas-dominated regions of nearby spirals. This result suggests that the early evolution of the Milky Way disk was characterized by stars that shared a similar star formation history and were formed in a well-mixed, turbulent, and molecular-dominated ISM with a gas consumption timescale (1/SFE) of ~2 Gyr. Finally, while the two alpha-element sequences in the inner Galaxy can be explained by a single chemical evolutionary track this cannot hold in the outer Galaxy, requiring instead a mix of two or more populations with distinct enrichment histories.Comment: 18 pages, 17 figures. Accepted for publication in Ap

    The Sloan Digital Sky Survey Quasar Lens Search. III. Constraints on Dark Energy from the Third Data Release Quasar Lens Catalog

    Get PDF
    We present cosmological results from the statistics of lensed quasars in the Sloan Digital Sky Survey (SDSS) Quasar Lens Search. By taking proper account of the selection function, we compute the expected number of quasars lensed by early-type galaxies and their image separation distribution assuming a flat universe, which is then compared with 7 lenses found in the SDSS Data Release 3 to derive constraints on dark energy under strictly controlled criteria. For a cosmological constant model (w=-1) we obtain \Omega_\Lambda=0.74^{+0.11}_{-0.15}(stat.)^{+0.13}_{-0.06}(syst.). Allowing w to be a free parameter we find \Omega_M=0.26^{+0.07}_{-0.06}(stat.)^{+0.03}_{-0.05}(syst.) and w=-1.1\pm0.6(stat.)^{+0.3}_{-0.5}(syst.) when combined with the constraint from the measurement of baryon acoustic oscillations in the SDSS luminous red galaxy sample. Our results are in good agreement with earlier lensing constraints obtained using radio lenses, and provide additional confirmation of the presence of dark energy consistent with a cosmological constant, derived independently of type Ia supernovae.Comment: 9 pages, 3 figures, 2 tables, accepted for publication in A
    • 

    corecore