152 research outputs found

    Unaltered left ventricular mechanics and remodelling after 12 weeks of resistance exercise training – a longitudinal study in men

    Get PDF
    Previous longitudinal studies suggest that left ventricular (LV) structure is unaltered with resistance exercise training (RT) in young men. However, evidence from aerobic exercise training suggests that early changes in functional LV wall mechanics may occur prior to and independently of changes in LV size, although short-term changes in LV mechanics and structural remodelling in response to RT protocols have not been reported. Therefore, the purpose of this study was to examine the effects of RT on LV mechanics in healthy men performing 2 different time-under-tension protocols. Forty recreationally trained men (age: 23 ± 3 years) were randomized into 12 weeks of whole-body higher-repetition RT (20–25 repetitions/set to failure at ∼30%–50% 1 repetition maximum (1RM); n = 13), lower-repetition RT (8–12 repetitions/set to failure at ∼75%–90% 1RM; n = 13), or an active control period (n = 14). Speckle tracking echocardiography was performed at baseline and following the intervention period. Neither RT program altered standard measures of LV volumes (end-diastolic volume, end-systolic volume, or ejection fraction; P > 0.05) or indices of LV mechanics (total LV twist, untwisting rate, twist-to-shortening ratio, untwisting-to-twist ratio, or longitudinal strain; P > 0.05). This is the first longitudinal study to assess both LV size and mechanics after RT in healthy men, suggesting a maintenance of LV size and twist mechanics despite peripheral muscle adaptations to the training programs. These results provide no evidence for adverse LV structural or functional remodelling in response to RT in young men and support the positive role of RT in the maintenance of optimal cardiovascular function, even with strenuous RT

    An Integrative and Uniform Model for Metadata Management in Data Warehousing Environment

    Get PDF
    Due to the increasing complexity of data warehouses, a centralized and declarative management of metadata is essential for data warehouse administration, maintenance and usage. Metadata are usually divided into technical and semantic metadata. Typically, current approaches only support subsets of these metadata types, such as data movement metadata or multidimensional metadata for OLAP. In particular, the interdependencies between technical and semantic metadata have not yet been investigated sufficiently. The representation of these interdependencies form an important prerequisite for the translation of queries formulated at the business concept level to executable queries on physical data. Therefore, we suggest a uniform and integrative model for data warehouse metadata. This model uses a uniform representation approach based on the Uniform Modeling Language (UML) to integrate technical and semantic metadata and their interdependencies

    Evaluierung von Data Warehouse-Werkzeugen

    Get PDF
    Die wachsende Bedeutung von Data Warehouse-Lösungen zur Entscheidungsunterstützung in großen Unternehmen hat zu einer unüberschaubaren Vielfalt von Software-Produkten geführt. Aktuelle Data Warehouse- Projekte zeigen, daß der Erfolg auch von der Wahl der passenden Werkzeuge für diese komplexe und kostenintensive Umgebung abhängt. Wir präsentieren eine Methode zur Evaluierung von Data Warehouse Tools, die eine Kombination aus Bewertung per Kriterienkatalog und detaillierten praktischen Tests umfaßt. Die Vorgehensweise ist im Rahmen von Projekten mit Industriepartnern erprobt und wird am Beispiel einer Evaluierung führender ETL-Werkzeuge demonstriert

    Expression of GP88 (Progranulin) Protein Is an Independent Prognostic Factor in Prostate Cancer Patients

    Get PDF
    Prostate cancer, the second most common cancer, is still a major cause of morbidity and mortality among men worldwide. The expression of the survival and proliferation factor progranulin (GP88) has not yet been comprehensively studied in PCa tumors. The aim of this study was to characterize GP88 protein expression in PCa by immunohistochemistry and to correlate the findings to the clinico-pathological data and prognosis. Immunohistochemical staining for GP88 was performed by TMA with samples from 442 PCa patients using an immunoreactive score (IRS). Altogether, 233 cases (52.7%) with negative GP88 staining (IRS < 2) and 209 cases (47.3%) with positive GP88 staining (IRS ≥ 2) were analyzed. A significant positive correlation was found for the GP88 IRS with the PSA value at prostatectomy and the cytoplasmic cytokeratin 20 IRS, whereas it was negatively associated with follow-up times. The association of GP88 staining with prognosis was further studied by survival analyses (Kaplan–Meier, univariate and multivariate Cox’s regression analysis). Increased GP88 protein expression appeared as an independent prognostic factor for overall, disease-specific and relapse-free survival in all PCa patients. Interestingly, in the subgroup of younger PCa patients (≤65 years), GP88 positivity was associated with a 3.8-fold (p = 0.004), a 6.0-fold (p = 0.008) and a 3.7-fold (p = 0.003) increased risk for death, disease-specific death and occurrence of a relapse, respectively. In the PCa subgroup with negative CK20 staining, GP88 positivity was associated with a 1.8-fold (p = 0.018) and a 2.8-fold increased risk for death and disease-specific death (p = 0.028). Altogether, GP88 protein positivity appears to be an independent prognostic factor for PCa patients

    CCL2 Expression in Tumor Cells and Tumor-Infiltrating Immune Cells Shows Divergent Prognostic Potential for Bladder Cancer Patients Depending on Lymph Node Stage

    Get PDF
    Bladder cancer (BCa) is the ninth most commonly diagnosed cancer worldwide. Although there are several well-established molecular and immunological classifications, markers for tumor cells and immune cells that are associated with prognosis are still needed. The chemokine CC motif ligand 2 (CCL2) could be such a marker. We analyzed the expression of CCL2 by immunohistochemistry (IHC) in 168 muscle invasive BCa samples using a tissue microarray. Application of a single cut-off for the staining status of tumor cells (TCs; positive vs. negative) and immune cells (ICs; ≤6% of ICs vs. >6% of ICs) revealed 57 cases (33.9%) and 70 cases (41.7%) with CCL2-positive TCs or ICs, respectively. IHC results were correlated with clinicopathological and survival data. Positive CCL2 staining in TCs was associated with shorter overall survival (OS), disease-specific survival (DSS), and relapse-free survival (RFS) (p = 0.004, p = 0.036, and p = 0.047; log rank test) and appeared to be an independent prognostic factor for OS (RR = 1.70; p = 0.007; multivariate Cox’s regression analysis). In contrast, positive CCL2 staining in the ICs was associated with longer OS, DSS, and RFS (p = 0.032, p = 0.001, and p = 0.001; log rank test) and appeared to be an independent prognostic factor for DSS (RR = 1.77; p = 0.031; multivariate Cox’s regression analysis). Most interestingly, after separating the patients according to their lymph node status (N0 vs. N1+2), CCL2 staining in the ICs was differentially associated with prognosis. In the N0 group, CCL2 positivity in the ICs was a positive independent prognostic factor for OS (RR = 1.99; p = 0.014), DSS (RR = 3.17; p = 0.002), and RFS (RR = 3.10; p = 0.002), whereas in the N1+2 group, CCL2 positivity was a negative independent factor for OS (RR = 3.44; p = 0.019)) and RFS (RR = 4.47; p = 0.010; all multivariate Cox’s regression analyses). In summary, CCL2 positivity in TCs is a negative prognostic factor for OS, and CCL2 can mark ICs that are differentially associated with prognosis depending on the nodal stage of BCa patients. Therefore, CCL2 staining of TCs and ICs is suggested as a prognostic biomarker for BCa patients

    Emergent dynamic chirality in a thermally driven artificial spin ratchet

    Get PDF
    Modern nanofabrication techniques have opened the possibility to create novel functional materials, whose properties transcend those of their constituent elements. In particular, tuning the magnetostatic interactions in geometrically frustrated arrangements of nanoelements called artificial spin ice1, 2 can lead to specific collective behaviour3, including emergent magnetic monopoles4, 5, charge screening6, 7 and transport8, 9, as well as magnonic response10, 11, 12. Here, we demonstrate a spin-ice-based active material in which energy is converted into unidirectional dynamics. Using X-ray photoemission electron microscopy we show that the collective rotation of the average magnetization proceeds in a unique sense during thermal relaxation. Our simulations demonstrate that this emergent chiral behaviour is driven by the topology of the magnetostatic field at the edges of the nanomagnet array, resulting in an asymmetric energy landscape. In addition, a bias field can be used to modify the sense of rotation of the average magnetization. This opens the possibility of implementing a magnetic Brownian ratchet13, 14, which may find applications in novel nanoscale devices, such as magnetic nanomotors, actuators, sensors or memory cells

    Thymosin beta 4 Improves Differentiation and Vascularization of EHTs

    Get PDF
    Induced pluripotent stem cells (iPSC) constitute a powerful tool to study cardiac physiology and represents a promising treatment strategy to tackle cardiac disease. However, iPSCs remain relatively immature after differentiation. Additionally, engineered heart tissue (EHT) has been investigated as a therapy option in preclinical disease models with promising results, although their vascularization and functionality leave room for improvement. Thymosin beta 4 (T beta 4) has been shown to promote the differentiation of progenitor cell lines to cardiomyocytes while it also induces angiogenic sprouting and vascular maturation. We examined the potential impact of T beta 4 to enhance maturation of cardiomyocytes from iPSCs. Assessing the expression of transcription factors associated with cardiac differentiation, we were able to demonstrate the increased generation of cells displaying cardiomyocyte characteristics in vitro. Furthermore, we demonstrated, in a zebrafish model of embryonic vascular development, that T beta 4 is crucial for the proper execution of lymphatic and angiogenic vessel sprouting. Finally, utilizing T beta 4-transduced EHTs generated from mice genetically engineered to label endothelial cells in vitro, we show that treatment with T beta 4 promotes vascularization and contractility in EHTs, highlighting T beta 4 as a growth factor improving the formation of cardiomyocytes from iPSC and enhancing the performance of EHTs generated from neonatal cardiomyocytes
    corecore