449 research outputs found

    Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles

    Get PDF
    Notch is a highly conserved transmembrane protein that is involved in cell fate decisions and is found in organisms ranging from Drosophila to humans. A human homologue of Notch, TAN1, was initially identified at the chromosomal breakpoint of a subset of T-cell lymphoblastic leukemias/lymphomas containing a t(7;9) chromosomal translocation; however, its role in oncogenesis has been unclear. Using a bone marrow reconstitution assay with cells containing retrovirally transduced TAN1 alleles, we analyzed the oncogenic potential of both nuclear and extranuclear forms of truncated TAN1 in hematopoietic cells. Although the Moloney leukemia virus long terminal repeat drives expression in most hematopoietic cell types, retroviruses encoding either form of the TAN1 protein induced clonal leukemias of exclusively immature T cell phenotypes in approximately 50% of transplanted animals. All tumors overexpressed truncated TAN1 of the size and subcellular localization predicted from the structure of the gene. These results show that TAN1 is an oncoprotein and suggest that truncation and overexpression are important determinants of transforming activity. Moreover, the murine tumors caused by TAN1 in the bone marrow transplant model are very similar to the TAN1-associated human tumors and suggest that TAN1 may be specifically oncotropic for T cells

    Ocular late effects in childhood and adolescent cancer survivors: A report from the childhood cancer survivor study

    Get PDF
    Introduction—Approximately 80% of children currently survive 5 years following diagnosis of their cancer. Studies based on limited data have implicated certain cancer therapies in the development of ocular sequelae in these survivors. Procedure—The Childhood Cancer Survivor Study (CCSS) is a retrospective cohort study investigating health outcomes of 5+ year survivors diagnosed and treated between 1970 and 1986 compared to a sibling cohort. The baseline questionnaire included questions about the first occurrence of 6 ocular conditions. Relative risks (RR) and 95% confidence intervals (CI) were calculated from responses of 14,362 survivors and 3,901 siblings. Results—Five or more years from the diagnosis, survivors were at increased risk of cataracts (RR:10.8; 95% CI: 6.2–18.9), glaucoma (RR: 2.5; 95% CI: 1.1–5.7), legal blindness (RR: 2.6; 95% CI: 1.7–4.0), double vision (RR:4.1; 95% CI: 2.7–6.1), and dry eyes (RR: 1.9; 95% CI: 1.6–2.4), when compared to siblings. Dose of radiation to the eye was significantly associated with risk of cataracts, legal blindness, double vision, and dry eyes, in a dose-dependent fashion. Risk of cataracts were also associated with radiation 3000+ cGy to the posterior fossa (RR: 8.4; 95% CI: 5.0–14.3), temporal lobe (RR: 9.4; 95% CI: 5.6–15.6), and exposure to prednisone (RR:2.3; 95% CI:.1.6–3.4) Conclusions—Childhood cancer survivors are at risk of developing late occurring ocular complications, with exposure to glucocorticoids and cranial radiation being important determinants of increased risk. Long-term follow-up is needed to evaluate potential progression of ocular deficits and impact on quality of life

    High-throughput, quantitative analyses of genetic interactions in E. coli.

    Get PDF
    Large-scale genetic interaction studies provide the basis for defining gene function and pathway architecture. Recent advances in the ability to generate double mutants en masse in Saccharomyces cerevisiae have dramatically accelerated the acquisition of genetic interaction information and the biological inferences that follow. Here we describe a method based on F factor-driven conjugation, which allows for high-throughput generation of double mutants in Escherichia coli. This method, termed genetic interaction analysis technology for E. coli (GIANT-coli), permits us to systematically generate and array double-mutant cells on solid media in high-density arrays. We show that colony size provides a robust and quantitative output of cellular fitness and that GIANT-coli can recapitulate known synthetic interactions and identify previously unidentified negative (synthetic sickness or lethality) and positive (suppressive or epistatic) relationships. Finally, we describe a complementary strategy for genome-wide suppressor-mutant identification. Together, these methods permit rapid, large-scale genetic interaction studies in E. coli

    Factors Affecting the Folding of Pseudomonas aeruginosa OprF Porin into the One-Domain Open Conformer

    Get PDF
    Pseudomonas aeruginosa OprF is a largely monomeric outer membrane protein that allows the slow, nonspecific transmembrane diffusion of solutes. This protein folds into two different conformers, with the majority conformer folding into a two-domain conformation that has no porin activity and the minority conformer into a one-domain conformation with high porin activity and presumably consisting of a large β barrel. We examined the factors that control the divergent folding pathways of OprF. OprF contains four Cys residues in the linker region connecting the N-terminal β-barrel domain and the C-terminal globular domain in the majority conformer. Prevention of disulfide bond formation either by expression of OprF in an Escherichia coli dsbA strain grown with dithiothreitol or by replacement of all Cys residues with serine (CS OprF) increased the specific pore-forming activity of OprF significantly. Replacement of Phe160 with Ile at the end of the β-barrel termination signal as well as replacement of Lys164 in the linker region with Gly, Cys, or Glu increased porin activity 2-fold. Improving a potential β-barrel termination signal in the periplasmic domain by replacement of Asp211 with asparagine also increased porin activity. The porin activity could be improved about 5-fold by the combination of these replacements. OprF mutants with higher porin activity were shown to contain more one-domain conformers by surface labeling of the A312C residue in intact cells, as this residue is located in the periplasmic domain in the two-domain conformers. Finally, when the OprF protein was expressed in an E. coli strain lacking the periplasmic chaperone Skp, the CS OprF protein exhibited increased pore-forming activity

    Clonal Hematopoiesis and Blood-Cancer Risk Inferred from Blood DNA Sequence

    Get PDF
    Background Cancers arise from multiple acquired mutations, which presumably occur over many years. Early stages in cancer development might be present years before cancers become clinically apparent. Methods We analyzed data from whole-exome sequencing of DNA in peripheral-blood cells from 12,380 persons, unselected for cancer or hematologic phenotypes. We identified somatic mutations on the basis of unusual allelic fractions. We used data from Swedish national patient registers to follow health outcomes for 2 to 7 years after DNA sampling. Results Clonal hematopoiesis with somatic mutations was observed in 10% of persons older than 65 years of age but in only 1% of those younger than 50 years of age. Detectable clonal expansions most frequently involved somatic mutations in three genes (DNMT3A, ASXL1, and TET2) that have previously been implicated in hematologic cancers. Clonal hematopoiesis was a strong risk factor for subsequent hematologic cancer (hazard ratio, 12.9; 95% confidence interval, 5.8 to 28.7). Approximately 42% of hematologic cancers in this cohort arose in persons who had clonality at the time of DNA sampling, more than 6 months before a first diagnosis of cancer. Analysis of bone marrow–biopsy specimens obtained from two patients at the time of diagnosis of acute myeloid leukemia revealed that their cancers arose from the earlier clones. Conclusions Clonal hematopoiesis with somatic mutations is readily detected by means of DNA sequencing, is increasingly common as people age, and is associated with increased risks of hematologic cancer and death. A subset of the genes that are mutated in patients with myeloid cancers is frequently mutated in apparently healthy persons; these mutations may represent characteristic early events in the development of hematologic cancers. (Funded by the National Human Genome Research Institute and others.)National Human Genome Research Institute (U.S.) (Grant U54 HG003067)National Human Genome Research Institute (U.S.) (Grant R01 HG006855)Stanley Center for Psychiatric ResearchAlexander and Margaret Stewart TrustNational Institute of Mental Health (U.S.) (Grant R01 MH 077139)National Institute of Mental Health (U.S.) (Grant RC2 MH089905)Sylvan C. Herman Foundatio

    Effect of 28 days of creatine ingestion on muscle metabolism and performance of a simulated cycling road race

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>The effects of creatine supplementation on muscle metabolism and exercise performance during a simulated endurance road race was investigated.</p> <p>Methods</p> <p>Twelve adult male (27.3 ± 1.0 yr, 178.6 ± 1.4 cm, 78.0 ± 2.5 kg, 8.9 ± 1.1 %fat) endurance-trained (53.3 ± 2.0 ml* kg<sup>-1</sup>* min<sup>-1</sup>, cycling ~160 km/wk) cyclists completed a simulated road race on a cycle ergometer (Lode), consisting of a two-hour cycling bout at 60% of peak aerobic capacity (VO<sub>2peak</sub>) with three 10-second sprints performed at 110% VO<sub>2 peak </sub>every 15 minutes. Cyclists completed the 2-hr cycling bout before and after dietary creatine monohydrate or placebo supplementation (3 g/day for 28 days). Muscle biopsies were taken at rest and five minutes before the end of the two-hour ride.</p> <p>Results</p> <p>There was a 24.5 ± 10.0% increase in resting muscle total creatine and 38.4 ± 23.9% increase in muscle creatine phosphate in the creatine group (<it>P </it>< 0.05). Plasma glucose, blood lactate, and respiratory exchange ratio during the 2-hour ride, as well as VO<sub>2 peak</sub>, were not affected by creatine supplementation. Submaximal oxygen consumption near the end of the two-hour ride was decreased by approximately 10% by creatine supplementation (P < 0.05). Changes in plasma volume from pre- to post-supplementation were significantly greater in the creatine group (<sup>+</sup>14.0 ± 6.3%) than the placebo group (<sup>-</sup>10.4 ± 4.4%; <it>P </it>< 0.05) at 90 minutes of exercise. The time of the final sprint to exhaustion at the end of the 2-hour cycling bout was not affected by creatine supplementation (creatine pre, 64.4 ± 13.5s; creatine post, 88.8 ± 24.6s; placebo pre, 69.0 ± 24.8s; placebo post 92.8 ± 31.2s: creatine vs. placebo not significant). Power output for the final sprint was increased by ~33% in both groups (creatine vs. placebo not significant).</p> <p>Conclusions</p> <p>It can be concluded that although creatine supplementation may increase resting muscle total creatine, muscle creatine phosphate, and plasma volume, and may lead to a reduction in oxygen consumption during submaximal exercise, creatine supplementation does not improve sprint performance at the end of endurance cycling exercise.</p

    Creativity and commerce: Michael Klinger and new film history

    Get PDF
    The crisis in film studies and history concerning their legitimacy and objectives has provoked a reinvigoration of scholarly energy in historical enquiry. 'New film history' attempts to address the concerns of historians and film scholars by working self-reflexively with an expanded range of sources and a wider conception of 'film' as a dynamic set of processes rather than a series of texts. The practice of new film history is here exemplified through a detailed case study of the independent British producer Michael Klinger (active 1961-87) with a specific focus on his unsuccessful attempt to produce a war film, Green Beach, based on a memoir of the Dieppe raid (August 1942). This case study demonstrates the importance of analysing the producer's role in understanding the complexities of film-making, the continual struggle to balance the competing demands of creativity and commerce. In addition, its subject matter - an undercover raid and a Jewish hero - disturbed the dominant myths concerning the Second World War, creating what turned out to be intractable ideological as well as financial problems. The paper concludes that the concerns of film historians need to engage with broader cultural and social histories. © 2010 Taylor & Francis
    corecore