119 research outputs found

    West Nile Virus Encephalitis and Myocarditis in Wolf and Dog

    Get PDF
    In the third season (2002) of the West Nile virus epidemic in the United States, two canids (wolf and dog) were diagnosed with West Nile virus encephalitis and myocarditis with similarities to known affected species (humans, horses, and birds). The West Nile virus infections were confirmed by immunohistochemistry and polymerase chain reaction

    Genetic and Serologic Properties of Zika Virus Associated with an Epidemic, Yap State, Micronesia, 2007

    Get PDF
    One-sentence summary for table of contents: The full coding region nucleic acid sequence and serologic properties of the virus were identified

    Persistence of Virus-Reactive Serum Immunoglobulin M Antibody in Confirmed West Nile Virus Encephalitis Cases

    Full text link
    Twenty-nine laboratory-confirmed West Nile virus (WNV) encephalitis patients were bled serially so that WNV-reactive immunoglobulin (Ig) M activity could be determined. Of those patients bled, 7 (60%) of 12 had anti-WNV IgM at approximately 500 days after onset. Clinicians should be cautious when interpreting serologic results from early season WNV IgM-positive patients

    Detection of RNA from a Novel West Nile-like Virus and High Prevalence of an Insect-specific Flavivirus in Mosquitoes in the Yucatan Peninsula of Mexico

    Get PDF
    As part of our ongoing surveillance efforts for West Nile virus (WNV) in the Yucatan Peninsula of Mexico, 96,687 mosquitoes collected from January through December 2007 were assayed by virus isolation in mammalian cells. Three mosquito pools caused cytopathic effect. Two isolates were orthobunyaviruses (Cache Valley virus and Kairi virus) and the identity of the third infectious agent was not determined. A subset of mosquitoes was also tested by reverse transcription-polymerase chain reaction (RT-PCR) using WNV-, flavivirus-, alphavirus-, and orthobunyavirus-specific primers. A total of 7,009 Culex quinquefasciatus in 210 pools were analyzed. Flavivirus RNA was detected in 146 (70%) pools, and all PCR products were sequenced. The nucleotide sequence of one PCR product was most closely related (71-73% identity) with homologous regions of several other flaviviruses, including WNV, St. Louis encephalitis virus, and Ilheus virus. These data suggest that a novel flavivirus (tentatively named T\u27Ho virus) is present in Mexico. The other 145 PCR products correspond to Culex flavivirus, an insect-specific flavivirus first isolated in Japan in 2003. Culex flavivirus was isolated in mosquito cells from approximately one in four homogenates tested. The genomic sequence of one isolate was determined. Surprisingly, heterogeneous sequences were identified at the distal end of the 5\u27 untranslated region

    Second Human Case of Cache Valley Virus Disease

    Get PDF
    We document the second known case of Cache Valley virus disease in a human. Cache Valley virus disease is rarely diagnosed in North America, in part because laboratories rarely test for it. Its true incidence, effect on public health, and full clinical spectrum remain to be determined

    La Crosse Virus in Aedes albopictus Mosquitoes, Texas, USA, 2009

    Get PDF
    We report the arthropod-borne pediatric encephalitic agent La Crosse virus in Aedes albopictus mosquitoes collected in Dallas County, Texas, USA, in August 2009. The presence of this virus in an invasive vector species within a region that lies outside the virus’s historically recognized geographic range is of public health concern

    Ross River Virus Disease Reemergence, Fiji, 2003–2004

    Get PDF
    We report 2 clinically characteristic and serologically positive cases of Ross River virus infection in Canadian tourists who visited Fiji in late 2003 and early 2004. This report suggests that Ross River virus is once again circulating in Fiji, where it apparently disappeared after causing an epidemic in 1979 to 1980

    A Comparative Study of Leptospirosis and Dengue in Thai Children

    Get PDF
    Two of the most common causes of acute febrile illnesses among children in the tropics are leptospirosis and dengue. Early in illness, these two conditions are often indistinguishable and rapid laboratory confirmation of the infecting pathogen is generally not available. An enhanced ability to distinguish leptospirosis from dengue in children would guide clinicians and public health personnel in the appropriate use of limited healthcare resources
    corecore