3,899 research outputs found

    A personal account of the discovery of hyperbolic structures on some knot complements

    Get PDF
    I give my view of the early history of the discovery of hyperbolic structures on knot complements from my early work on representations of knot groups into matrix groups to my meeting with William Thurston in 1976. (This article was written by Robert Riley about ten years before his death in 2000 and never submitted for publication. An explanation of why it is being published now and some information about Riley and this article is given in the article by Brin, Jones and Singerman which accompanies this article in this issue of the [journal | arxiv].)Comment: 14 pages, 1 figur

    General formalism for vibronic Hamiltonians in tetragonal symmetry and beyond

    Get PDF
    We derive general expansion formulas in vibrational coordinates for all bimodal Jahn–Teller and pseudo-Jahn–Teller Hamiltonians in tetragonal symmetry. Symmetry information of all the vibronic Hamiltonian matrix elements is fully carried by up to only 4 eigenvalues of symmetry operators. This problem-to-eigenvalue reduction enables us to handle thousands of vibronic problems in one work. The derived bimodal formulas can be easily extended to cover problems with one or more than two vibrational modes. They lay a solid foundation for future vibronic coupling studies of tetragonal systems. More importantly, the efficient derivation can be applied to handle (pseudo-)Jahn–Teller Hamiltonians for all problems with one principal symmetry axis

    Functional and Structural Adaptations of Skeletal Muscle to Microgravity

    Get PDF
    Our purpose is to summarize the major effects of space travel on skeletal muscle with particular emphasis on factors that alter function. The primary deleterious changes are muscle atrophy and the associated decline in peak force and power. Studies on both rats and humans demonstrate a rapid loss of cell mass with microgravity. In rats, a reduction in muscle mass of up to 37% was observed within 1 week. For both species, the antigravity soleus muscle showed greater atrophy than the fast-twitch gastrocnemius. However, in the rat, the slow type I fibers atrophied more than the fast type II fibers, while in humans, the fast type II fibers were at least as susceptible to space-induced atrophy as the slow fiber type. Space flight also resulted in a significant decline in peak force. For example, the maximal voluntary contraction of the human plantar flexor muscles declined by 20–48% following 6 months in space, while a 21 % decline in the peak force of the soleus type I fibers was observed after a 17-day shuttle flight. The reduced force can be attributed both to muscle atrophy and to a selective loss of contractile protein. The former was the primary cause because, when force was expressed per cross-sectional area (kNm-2), the human fast type II and slow type I fibers of the soleus showed no change and a 4% decrease in force, respectively. Microgravity has been shown to increase the shortening velocity of the plantar flexors. This increase can be attributed both to an elevated maximal shortening velocity (V0) of the individual slow and fast fibers and to an increased expression of fibers containing fast myosin. Although the cause of the former is unknown, it might result from the selective loss of the thin filament actin and an associated decline in the internal drag during cross-bridge cycling. Despite the increase in fiber V0, peak power of the slow type I fiber was reduced following space flight. The decreased power was a direct result of the reduced force caused by the fiber atrophy. In addition to fiber atrophy and the loss of force and power, weightlessness reduces the ability of the slow soleus to oxidize fats and increases the utilization of muscle glycogen, at least in rats. This substrate change leads to an increased rate of fatigue. Finally, with return to the 1 g environment of earth, rat studies have shown an increased occurrence of eccentric contraction-induced fiber damage. The damage occurs with re-loading and not in-flight, but the etiology has not been established

    Villages in a Future Landscape

    Get PDF

    Verification issues for rule-based expert systems

    Get PDF
    Verification and validation of expert systems is very important for the future success of this technology. Software will never be used in non-trivial applications unless the program developers can assure both users and managers that the software is reliable and generally free from error. Therefore, verification and validation of expert systems must be done. The primary hindrance to effective verification and validation is the use of methodologies which do not produce testable requirements. An extension of the flight technique panels used in previous NASA programs should provide both documented requirements and very high levels of verification for expert systems

    Approaches to the verification of rule-based expert systems

    Get PDF
    Expert systems are a highly useful spinoff of artificial intelligence research. One major stumbling block to extended use of expert systems is the lack of well-defined verification and validation (V and V) methodologies. Since expert systems are computer programs, the definitions of verification and validation from conventional software are applicable. The primary difficulty with expert systems is the use of development methodologies which do not support effective V and V. If proper techniques are used to document requirements, V and V of rule-based expert systems is possible, and may be easier than with conventional code. For NASA applications, the flight technique panels used in previous programs should provide an excellent way to verify the rules used in expert systems. There are, however, some inherent differences in expert systems that will affect V and V considerations

    An expert system development methodology which supports verification and validation

    Get PDF
    Expert systems have demonstrated commercial viability in a wide range of applications, but still face some obstacles to widespread use. A major stumbling block is the lack of well defined verification and validation (V and V) techniques. The primary difficulty with expert system V and V is the use of development methodologies which do not support V and V. As with conventional code, the key to effective V and V is the development methodology. An expert system development methodology is described which is based upon a panel review approach, that allows input from all parties concerned with the expert system

    Terror and territory: A spatio-temporal analysis of ISIL

    Get PDF
    The Islamic State of Iraq and the Levant (ISIL), alternatively the Islamic State of Iraq and Syria (ISIS), is one of many non-state organizations that resulted from the extensive foreign intervention in the Middle East leading up to current conflicts there. Like the wider network that it used to be part of, ISIL is considered to be a great threat to modern first world countries. Using data from the Global Terrorism Database (GTD), this paper analyzed the relationship between the amount of territory ISIL held from June 2014 to December 2015 and the attacks it carried out in that time, using Standard Deviational Ellipses to analyze directional orientation and distribution density of the attacks. The results showed that there was a slight correlation between significant land loss and increases in attacks in the following quarter

    Financial history of the motion picture industry

    Full text link
    Thesis (M.B.A.)--Boston Universit
    • …
    corecore