
AN EXPERT SYSTEM DEVELOPMENT METHODOLOGY
WHICH SUPPORTS VERIFICATION AND VALIDATION

Chris Culbert, Gary Riley, Robert T. Savely
Artificial Intelligence Section

-1
I 1 J

--A

13

J Submitted in September 1987
to the Fourth

IEEE Conference on -J

p";' NASA/Lyndon B. Johnson Space Center
Houston, TX

https://ntrs.nasa.gov/search.jsp?R=19890016264 2020-03-20T01:24:21+00:00Z

AN EXPERT SYSTEM DEVELOPMENT METHODOLOGY
WHICH SUPPORTS VERIFICATION AND VALIDATION

Chris Culbert, Gary Riley, Robert T. Savely
NASNJohnson Space Center

Artificial Intelligence Section - FM72
Houston, TX 77058

(71 3) 483-8080

ABSTRACT

Expert systems have demonstrated commercial viability in a wide range of
applications, but still face some obstacles to widespread use. A major stumbling
block is the lack of well-defined verification and validation (V&V) techniques.
The primary difficulty with expert system V&V is the use of development
methodologies which do not support V&V. As with conventional code, the key to
effective V&V is the development methodology. This paper describes an expert
system development methodology based upon a panel review approach which
allows input from all parties concerned with the expert system.

Subject Categories
Expert Systems, Verification and Validation of Expert Systems, Expert System
Development Methodologies

INTRODUCTION

Expert systems represent one important by-product of Artificial Intelligence
research efforts. They have been under development for many years and have
reached commercial viability in the last three to four years. However, despite
their apparent utility and the growing number of applications being developed,
not all expert systems reach the point of operational use. One reason for this is
the lack of well understood techniques for V&V of expert systems.

Developers of computer software for use in mission or safety critical
applications have always relied upon extensive V&V to ensure that safety
and/or mission goals were not compromised by software problems. Expert
system applications are computer programs and the same definitions for V&V
apply to expert systems. Consequently, expert systems require the same
assurance of correctness as conventional software.

Despite the clear need for V&V, considerable confusion exists over how to
accomplish V&V of an expert system. There are even those who question
whether or not it can be done. This confusion must be resolved if expert systems
are to succeed. As with conventional software, the key to effective V&V is
through the proper use of a development methodology which both supports and
encourages the development of verifiable software.

THE COMMON EXPERT SYSTEM DEVELOPMENT METHODOLOGY

Most existing expert systems are based upon relatively new software
techniques which were developed to describe human heuristics and to provide
a better model of complex systems. In expert system terminology, these
techniques are called knowledge representation. Although numerous
knowledge representation techniques are currently in use (rules, objects,
frames, etc) they all share some common characteristics. One shared
characteristic is the ability to provide a very high level of abstraction. Another is
the explicit separation of the knowledge which describes how to solve problems
from the data which describes the current state of the world.

Each of the available representations have strengths and weaknesses. With the
current state-of-the-art, it is not always obvious which representation is most
appropriate for solving a problem. Therefore, most expert system development
is commonly done by rapid prototyping. The primary purpose of the initial
prototype is to demonstrate the feasibility of a particular knowledge
representation. It is not unusual for entire prototypes to be discarded if the
representation doesn't provide the proper reasoning flexibility.

Another common characteristic of expert system development is that relatively
few requirements are initially specified. Typically, a rather vague, very general
requirement is suggested, e,g., "We want a program to do just what Charlie
does". Development of the expert system starts with an interview during which
the knowledge engineer tries to discover both what it is that Charlie does and
how he does it. Often there are no requirements written down except the initial
goal of "doing what Charlie does". All the remaining system requirements are
formulated by ii le knowledge engineer during development. Sometimes, the
eventual users of the system are neither consulted nor even specified until late
in the development phase. As with conventional code, failure to consult the
intended users early in the development phase results in significant additional
costs later in the program.

So where does all this lead? The knowledge engineer is developing one or
more prototypes which attempt to demonstrate the knowledge engineer's
understanding of Charlie's expertise. However, solid requirements written down
in a clear, understandable, easy to test manner generally don't exist. This is why
most expert systems are difficult to verify and validate; not because they are
implicitly different from other computer applications, but because they are
commonly developed in a manner which makes them very difficult or impossible
to test.

EXPERT SYSTEM ISSUES FOR A GOOD V&V METHODOLOGY

From the preceding section, it should be clear that a major problem with V&V of
expert systems is the use of development methodologies which do not generate
requirements which can be tested. The goal of any software development
methodology is to produce reliable code that is both maintainable and
verifiable, A software development methodology for expert systems must sewe
a similar purpose as one for conventional software. However, there are some

,
\

differences between expert systems and conventional software which will affect
the development methodology.

Standard software development methodologies place emphasis on the capture
of complete and rigid specifications to improve the ability of the system
designers to find errors early in the design cycle. The specifications define both
the intended purpose and the intended behavior of the program. These
specifications are translated into requirements and serve as the primary
comparison point for all V&V efforts.

Some expert systems can probably be developed by using conventional
software engineering techniques to create software requirements and design
specifications (Bochsler and Goodwinl). However, the type of knowledge used
in expert systems doesn't always lend itself to this approach. It is best obtained
through iterative refinement of a prototype which allows the expert to spot errors
in the expert system reasoning before he can clearly specify the correct rules.
Experts are not always able to articulate either the methods or the underlying
reasons they use to solve a problem without applying the knowledge in context.

Another difficulty in writing complete specifications is that some expert systems
deal with problems where there is no correct, absolute answer, only more or
less adequate answers (Partridgez). In this situation, it can be difficult for the
ex,pert to provide complete descriptions of what outputs the expert system
should generate. It is more common to specify how the expert system should
behave under certain circumstances. By properly modeling this behavior the
expert system will presumably produce acceptable answers.

When defining a development methodology for expert systems, the broad range
of applications to which they can be applied must also be considered. An expert
system application can be anything from an entire program dedicated to
complex reasoning to an embedded, integrated application where the
reasoning portion is only one module in a larger conventional program. If the
primary focus of the program is reasoning and the expert system is the
dominant piece of code, certainly one would use a development methodology
intended specifically for expert systems. If the reasoning module is only a small
piece in an otherwise conventional program, the unique characteristics of
expert systems still dictate the use of a development methodology specific to
expert systems for that section of the program. However, the expert system
development methodology must be consistent with the overall development
methodology. Modular coding techniques which allow separate development of
each module will greatly aid the integration.

A DEVELOPMENT METHODOLOGY FOR EXPERT SYSTEMS

In a previous paper, (Culbert, et al.3) the authors suggested a panels approach
to verification of expert systems. A panel consisting of the expert system
developers, the domain experts, the system users, and managers with system
responsibility represents all applicable viewpoints. Verification of both design
and purpose are provided by regular panel review. The following methodology

incorporates this approach and is based upon a life cycle model proposed by
Citrenbaum and Geissman4. The steps proposed below are most appropriate
when developing an expert system which captures expertise from only one or
two experts in a single domain area. It allows for the inclusion of conventional
code portions, but the reasoning part of the system is the dominant piece. The
modifications needed to adapt this methodology for large systems with multiple
experts from multiple domains will be discussed in a future paper.

The expert system lifecycle can be split into four phases: the Problem Definition
Phase, the Initial Prototype Phase, the Expanded Prototype Phase, and the
De live ry/Mai nten ance Phase.

Problem Definition Phase

This phase is similar to the requirements definition stage of a conventional
program. The purpose of this work is to define what it is the expert system
should do. The actual activities can be broken down as follows:

Discuss the general domain area and focus on the types of problems
the system managers would like to have solved. I f needed, provide
general background information on what expert systems are and what
they are capable of.

Identify who the experts are and arrange for access to them. Identify the
users of the expert system.

First panel meeting. Oiscuss the problem area with the experts, the
lissis, and the managers to ensure consistent understanding of the
purpose of the expert system. Identify and discuss the potential delivery
environment.

Interview experts at least two to three times and read any applicable
documentation or background material. Focus on what it is the expert
does and how he or she does it.

Interview potential users of the expert system. Focus on their skill level
with respect to the domain. Identify what their computer skills are.

Select a representative subset of the full problem which can be rapidly
developed in an initial prototype to demonstrate feasibility.

Examine knowledge representation methodologies and choose a tool
or shell for prototype development.

At the end of this phase, an initial requirements review (IRR) should be held by
the full panel to present findings to date and to begin the documenting the
requirements for future V&V efforts. The IRR report should include:

An initial description of what it is the expert system should do. Identify
both the long term goals for the program and the short term goals for
the initial prototype.

An initial estimate of the amount of time the expert will be needed for
consultation during the next phase.

A discussion of any limitation or assumptions about the users and how
they will use the expert system. Also identify specific skills the users
must have to work with the expert system.

A discussion of potential limitations or trade-offs inherent in the delivery
envi ion me nt.

A detailed listing of the requirements currently established.

A tentative schedule for demonstration of the initial prototype.

Initial Prototype Phase

This stage is similar to the design phase of a conventional program. The
purpose of this work is to quickly demonstrate the feasibility of the project and
establish the most appropriate knowledge representation techniques. The
activities during this phase include:

Design the system architecture. Select a knowledge representation
method and an inference mechanism. Select an appropriate tool for
development (Note that differences between the development
environment and the delivery environment may influence tool choice).

Identify and define the interfaces between expert system and any
external information sources (databases, users, other programs,
special hardware). Define what portions of the problem will use
conventional code.

Construct the initial prototype focussing on t h e knowledge base and
inferencing techniques. Generally, the interfaces are not fully
developed and hooks are left in the knowledge base for future
expansion. Develop the conventional code sections only as needed to
support reasoning modules. Consult the experts as needed to clarify
information.

Demonstrate the partially completed knowledge base to the domain
experts at least two or three times. These demonstrations will improve
the experts ability to correct mistakes in understanding or approach at
an early stage.

At the end of this phase, a prototype demonstration should be held to show the
panel how the project is proceeding. Any requirements gathered during this
phase should be documented. A preliminary design review (PDR) should be

held with the full panel to discuss architecture issues and overall project
feasibility .
Expanded Prototype Phase

This stage is similar to the coding phase of a conventional program. The
purpose of this work is to expand the capabilities of the expert system to its full
extent. The activities during this phase are iterative and the following steps may
be repeated many times until a satisfactory prototype is completed.

Demonstrate the prototype to the full panel. Encourage the use of real
problems and previous cases for comparison. Accept inputs from all
portions of the panel about the overall system design and capabilities.
This is the time when the requirements become more consistent and
rigid.

Critically examine the initial prototype. Further development can
continue from this base, or it may be appropriate to throw away the
initial prototype (keeping the knowledge base) and start with a new
model.

Discuss the user interface needs with the users. Expand the hooks from
the initial prototype to include all features needed in the system.
Develop and integrate all other interface areas (databases, external
hardware, etc.). If the delivery system needs to be ported, consideration
should be given to designing portable interfaces.

Ewpznd ;he knowledge in the knowledge base to cover all aspects of
the full problem. Consult the experts as needed to clarify the reasoning. -
Demonstrate the system to experts regularly to get feedback on
correctness of reasoning and validity of solutions.

Fully develop and integrate any conventional code portions of the
system.

If long term maintenance is to be provided by someone other than the
developers, the system maintainers should be involved in the final
portions of extending the prototype.

At the end of this phase, the expert system should be fully functional. As with the
previous stage, all requirements gathered during this stage should be
documented. Depending on the project, the requirements can be documented
at the end of this phase, or throughout the development. In either case, all the
requirements, including those gathered during the first two phases, should be
documented in a formal System Requirements Document. A formal System
Design Review should be held with the full panel. The panel as a whole should
publish a test plan which describes how the completed expert system will be
verified

.

Delivery/Maintenance Phase

This phase potentially has as many as three steps. If the development
environment is different from the delivery environment, then the expert system
must first be ported to the delivery environment. Once the expert system is
running in the target environment, final V&V testing can be done. Finally, after
formal delivery of the expert system, a maintenance stage can be initiated.

The testing stage provides the final V&V efforts. There are many concerns
during this stage that are common to both expert system and conventional
programs as well as some concerns unique to expert systems including such
issues as verifying the inference engine, correctness of reasoning, tracing of
requirements, etc. These are discussed more fully in reference 3. The method
of testing should have been specified in the test plan generated at the end of
the expanded prototype phase. Problems encountered during testing should be
reviewed by the full panel and may send the project back into the extended
prototype phase.

After the program has passed final testing, the expert system can be placed
under standard configuration control. Depending on the type of program and its
use, the review panel may become a configuration control board or
responsibility may be turned over to another group. Maintenance from this stage
on can be handled in a fairly standard manner, although extensive changes
may require further prototyping work and review by the original panel.

CONCLUSIONS

V&V of expert systems is necessary for the eventual use of this technology. The
primary hindrance to effective V&V is the use of methodologies which do not
produce traceable, testable requirements. In this paper we have presented a
methodology based upon the panel approach which can provide the needed
requirements as well as consistent, continual verification through panel review.

REFERENCES

1.

2.

3.

Bochsler, D.C. and Goodwin, M.A., "Software Engineering Techniques
Used to Develop an Expert System for Automated Space Vehicle Ren-
dezvous", Proceeding of the Second Annual Workshop on Robotics and
Expert Systems, Instrument Society of America, Research Triangle Park,
NC., June 1986.

Part r i d g e , D . , " E n g i n e e r i n g Art i f i c i a I I n t e I I i g e n c e S o f t wa re " , A rt i f i ci a I
Intelligence Review, Vol. 1, No. 1 , 1986.

Culbert, C.J., Riley, G., and Savely, R.T., "Approaches to the Verification of
Rule-based Expert Systems", Proceedings of SOAR'87: Space
Operations- Automation and Robotics Conference, Houston, TX., August
1987.

.. ,

4. Citrenbaum, R.L. and Geissman, J.R., "A Practical Cost-Conscious Expert
System Development Methodology", Proceedings of AI-86: Artificial
Intelligence and Advanced Computer Technology Conference, Long
Beach, CA., April 1986.

