22 research outputs found

    Skeletal muscle power and fatigue at the tolerable limit of ramp-incremental exercise in COPD

    Get PDF
    Muscle fatigue (a reduced power for a given activation) is common following exercise in COPD. Whether muscle fatigue, and reduced maximal voluntary locomotor power, are sufficient to limit whole-body exercise in COPD is unknown. We hypothesized in COPD: 1) exercise is terminated with a locomotor muscle power reserve; 2) reduction in maximal locomotor power is related to ventilatory limitation; and 3) muscle fatigue at intolerance is less than age-matched controls. We used a rapid switch from hyperbolic to isokinetic cycling to measure the decline in peak isokinetic power at the limit of incremental exercise ('performance fatigue') in 13 COPD (FEV1 49±17 %pred) and 12 controls. By establishing the baseline relationship between muscle activity and isokinetic power, we apportioned performance fatigue into the reduction in muscle activation and muscle fatigue. Peak isokinetic power at intolerance was ~130% of peak incremental power in controls (274±73 vs 212±84W, p<0.05), but ~260% in COPD (187±141 vs 72±34W, p<0.05) - greater than controls (p<0.05). Muscle fatigue as a fraction of baseline peak isokinetic power was not different in COPD vs controls (0.11±0.20 vs 0.19±0.11). Baseline to intolerance, the median frequency of maximal isokinetic muscle activity was unchanged in COPD but reduced in controls (+4.3±11.6 vs -5.5±7.6%, p<0.05). Performance fatigue as a fraction of peak incremental power was greater in COPD vs controls and related to resting (FEV1/FVC) and peak exercise (V̇E/MVV) pulmonary function (r2=0.47, r2=0.55, p<0.05). COPD patients are more fatigable than controls, but this fatigue is insufficient to constrain locomotor power and define exercise intolerance

    Common Genetic Polymorphisms Influence Blood Biomarker Measurements in COPD

    Get PDF
    Implementing precision medicine for complex diseases such as chronic obstructive lung disease (COPD) will require extensive use of biomarkers and an in-depth understanding of how genetic, epigenetic, and environmental variations contribute to phenotypic diversity and disease progression. A meta-analysis from two large cohorts of current and former smokers with and without COPD [SPIROMICS (N = 750); COPDGene (N = 590)] was used to identify single nucleotide polymorphisms (SNPs) associated with measurement of 88 blood proteins (protein quantitative trait loci; pQTLs). PQTLs consistently replicated between the two cohorts. Features of pQTLs were compared to previously reported expression QTLs (eQTLs). Inference of causal relations of pQTL genotypes, biomarker measurements, and four clinical COPD phenotypes (airflow obstruction, emphysema, exacerbation history, and chronic bronchitis) were explored using conditional independence tests. We identified 527 highly significant (p 10% of measured variation in 13 protein biomarkers, with a single SNP (rs7041; p = 10−392) explaining 71%-75% of the measured variation in vitamin D binding protein (gene = GC). Some of these pQTLs [e.g., pQTLs for VDBP, sRAGE (gene = AGER), surfactant protein D (gene = SFTPD), and TNFRSF10C] have been previously associated with COPD phenotypes. Most pQTLs were local (cis), but distant (trans) pQTL SNPs in the ABO blood group locus were the top pQTL SNPs for five proteins. The inclusion of pQTL SNPs improved the clinical predictive value for the established association of sRAGE and emphysema, and the explanation of variance (R2) for emphysema improved from 0.3 to 0.4 when the pQTL SNP was included in the model along with clinical covariates. Causal modeling provided insight into specific pQTL-disease relationships for airflow obstruction and emphysema. In conclusion, given the frequency of highly significant local pQTLs, the large amount of variance potentially explained by pQTL, and the differences observed between pQTLs and eQTLs SNPs, we recommend that protein biomarker-disease association studies take into account the potential effect of common local SNPs and that pQTLs be integrated along with eQTLs to uncover disease mechanisms. Large-scale blood biomarker studies would also benefit from close attention to the ABO blood group

    Dynamic airway function during exercise in COPD assessed via impulse oscillometry before and after inhaled bronchodilators

    No full text
    Assessing airway function during exercise provides useful information regarding mechanical properties of the airways and the extent of ventilatory limitation in COPD. The primary aim of this study was to use impulse oscillometry (IOS) to assess dynamic changes in airway impedance across a range of exercise intensities in patients with GOLD 1-4, before and after albuterol administration. A secondary aim was to assess the reproducibility of IOS measures during exercise. Fifteen patients with COPD (8 males/7 females; age = 66 ± 8 yr; prebronchodilator FEV1 = 54.3 ± 23.6%Pred) performed incremental cycle ergometry before and 90 min after inhaled albuterol. Pulmonary ventilation and gas exchange were measured continuously, and IOS-derived indices of airway impedance were measured every 2 min immediately preceding inspiratory capacity maneuvers. Test-retest reproducibility of exercise IOS was assessed as mean difference between replicate tests in five healthy subjects (3 males/2 females). At rest and during incremental exercise, albuterol significantly increased airway reactance (X5) and decreased airway resistance (R5, R5-R20), impedance (Z5), and end-expiratory lung volume (60% ± 12% vs. 58% ± 12% TLC, main effect P = 0.003). At peak exercise, there were moderate-to-strong associations between IOS variables and IC, and between IOS variables and concavity in the expiratory limb of the spontaneous flow-volume curve. Exercise IOS exhibited moderate reproducibility in healthy subjects which was strongest with R5 (mean diff. = -0.01 ± 0.05 kPa/L/s; ICC = 0.68), R5-R20 (mean diff. = -0.004 ± 0.028 kPa/L/s; ICC = 0.65), and Z5 (mean diff. = -0.006 ± 0.021 kPa/L/s; ICC = 0.69). In patients with COPD, exercise evoked increases in airway resistance and decreases in reactance that were ameliorated by inhaled bronchodilators. The technique of exercise IOS may aid in the clinical assessment of dynamic airway function during exercise.NEW &amp; NOTEWORTHY This study provides a novel, mechanistic insight into dynamic airway function during exercise in COPD, before and after inhaled bronchodilators. The use of impulse oscillometry (IOS) to evaluate airway function is unique among exercise studies. We show strong correlations among IOS variables, dynamic hyperinflation, and shape-changes in the spontaneous expiratory flow-volume curve. This approach may aid in the clinical assessment of airway function during exercise

    Hepatic insulin sensitizing substance: a novel ‘sensocrine' mechanism to increase insulin sensitivity in anaesthetized rats

    No full text
    1. We recently described the sensory nitrergic nature of the hepatic insulin sensitizing substance (HISS) mechanism linked to postprandial activation of anterior hepatic plexus fibres in rabbits. This study is designed to assess the involvement of the sensory pathways in this mechanism. 2. Selective sensory denervation of the anterior hepatic plexus (AHP) was achieved by a 3-day perineurial treatment with 2% capsaicin solution in Wistar rats (230–250 g). After 1 week, hyperinsulinaemic (100 μU kg(−1)) euglycaemic (5.5 mmol kg(−1)) glucose clamp studies were performed to estimate insulin sensitivity. 3. The rats with regional AHP sensory denervation exhibited a significantly decreased insulin sensitivity, that is, 9.1±1.0 mg kg(−1) min(−1) glucose reinstalled euglycaemia vs 13.3±1.9 mg kg(−1) min(−1) glucose (P<0.01) in control rats. 4. Acute partial hepatic denervation by AHP cut was without effect on insulin sensitivity, whereas chronic hepatic denervation induced insulin resistance was similar to that achieved by regional AHP capsaicin treatment. 5. Intraportal administration of L-NAME (10 mg kg(−1)) decreased, whereas capsaicin (0.3 mg kg(−1) min(−1)) increased insulin sensitivity. Neither atropine (1 mg kg(−1)) nor acetylcholine (1–10 μg mg min(−1)) produced any significant effect. In animals with preceding regional capsaicin desensitization, none of the pharmacological manoeuvres modified the resulting insulin-resistant state. 6. Cysteamine (200 mg kg(−1) s.c.) is known to cause functional somatostatin depletion-induced insulin resistance similar to that produced by either chronic partial hepatic denervation or perineurial AHP capsaicin desensitization. Intraportal capsaicin (0.3 mg kg(−1) min(−1)) was unable to modify insulin resistance achieved by cysteamine. 7. We conclude that capsaicin-sensitive sensory fibres play a crucial role in neurogenic insulin sensitization known as the HISS mechanism without involvement of anatomical reflex-mediated circuits. The results also suggest that HISS is identical to somatostatin of AHP sensory neural origin

    Haemoglobin as a biomarker for clinical outcomes in chronic obstructive pulmonary disease.

    No full text
    In COPD, anaemia is associated with increased morbidity, but the relationship between haemoglobin over its entire observed range and morbidity is poorly understood. Such an understanding could guide future therapeutic targeting of haemoglobin in COPD management. Leveraging the COPDGene study, we conducted a cross-sectional analysis of haemoglobin from COPD participants, examining symptoms, quality of life, functional performance, and acute exacerbations of COPD (AECOPD). Haemoglobin was analysed both as a continuous variable and categorised into anaemia, normal haemoglobin, and polycythaemia groups. Fractional polynomial modelling was used for continuous analyses; categorical models were multivariable linear or negative binomial regressions. Covariates included demographics, comorbidities, emphysema, diffusing capacity, and airflow obstruction. From 2539 participants, 366 (14%) were identified as anaemic and 125 (5%) as polycythaemic. Compared with normal haemoglobin, anaemia was significantly associated with increased symptoms (COPD Assessment Test score: p=0.006, modified Medical Research Council (mMRC) Dyspnoea Score: p=0.001); worse quality of life (St. George's Respiratory Questionnaire (SGRQ) score: p&lt;0.001; Medical Outcomes Study Short Form 36-item Questionnaire (SF-36) General Health: p=0.002; SF-36 Physical Health: p&lt;0.001), decreased functional performance (6-min walk distance (6MWD): p&lt;0.001), and severe AECOPD (p=0.01), while polycythaemia was not. Continuous models, however, demonstrated increased morbidity at both ends of the haemoglobin distribution (p&lt;0.01 for mMRC, SGRQ, SF-36 Physical Health, 6MWD, and severe AECOPD). Evaluating interactions, both diffusing capacity and haemoglobin were independently associated with morbidity. We present novel findings that haemoglobin derangements towards either extreme of the observed range are associated with increased morbidity in COPD. Further investigation is necessary to determine whether haemoglobin derangement drives morbidity or merely reflects systemic inflammation, and whether correcting haemoglobin towards the normal range improves morbidity
    corecore